Что такое индукционный нагрев. Индукционный нагреватель — что это и как собрать прибор самостоятельно

Индукционный нагреватель состоит из мощного источника высокой частоты и колебательного контура, включающего в себя индуктор (рис. 1). В переменное магнитное поле индуктора помещается нагреваемая заготовка. В зависимости от материала заготовки, её объёма и глубины нагрева, применяется широкий диапазон рабочих частот, от 50 Гц до десятков МГц. При низких частотах порядка 100-10000 Гц в промышленности могут применяются электромашинные преобразователи и тиристорные инверторы. При частотах порятка МГц могут применяться электронные лампы. На средних частотах порядка 10-300 кГц целесообразно применять транзисторы IGBT/MOSFET.

Рисунок 1. Общая схема

Физика

Согласно закону электромагнитной индукции, если проводник находится в изменяющемся (переменном) магнитном поле, то в нём индуцируется (наводится) электродвижущая сила (ЭДС), направление которой перпендикулярно силовым линиям магнитного поля, пересекающего проводник. При этом амплитуда ЭДС пропорциональна скорости изменения магнитного потока, в котором находится проводник.
Говоря простым языком, если заготовку из проводящего материала рассматривать как бесконечное множество короткозамкнутых контуров, то при помещении её в индуктор, под действием переменного магнитного поля в этих контурах будут индуцироваться токи (т.н. вихревые или токи Фуко). В свою очередь эти токи, согласно закону Джоуля-Ленца, вызовут нагрев заготовки, так как её материал обладает электрическим сопротивлением.


Рисунок 2. Принцип работы

Как при прохождении по металлическим проводникам переменного тока, так и при нагреве токами высокой частоты металлов, наблюдается поверхностный эффект (скин-эффект). Связано это с тем, что вихревые токи в толще проводника вытесняют основной ток на поверхность. Индукционный нагрев металла интенсивнее у поверхности, чем в центре. Глубина скин-слоя зависит от удельного сопротивления материала, его магнитной проницаемости и обратно пропорциональна частоте поля. Поэтому, в зависимости от частоты, данный метод нагрева может применяться как для плавки металла, так и для поверхностной закалки.

Согласование

Для инвертора, являющегося источником напряжения прямоугольной формы, LC-контур является нагрузкой с низким импедансом. Для согласования применяются высокочастотные трансформаторы или дроссели.
Согласующий дроссель, включенный в разрыв провода между инвертором и контуром, вместе с резонансным конденсатором образует LC-фильтр. Таким образом, отбирая небольшую часть емкости резонансного конденсатора, дроссель в малой степени влияет на частотную характеристику контура. Обычно такой дроссель выполняется на ферритовом сердечнике с воздушным зазором, изменяя величину которого, можно регулировать подводимую к индуктору мощность.
Высокочастотный трансформатор может работать как на параллельный контур, так и последовательный. В первом случае трансформатор сильно повлияет на резонансную частоту контура. Во втором случае последовательный контур в резонансном режиме будет потреблять максимум мощности с пустым индуктором (без нагрузки), т.к. при резонансе напряжений реактивное сопротивление LC-цепи стремится к нулю, а активное в таких цепях - как правило, очень мало. Конструктивно согласующий трансформатор выполняется на ферритовом кольце (либо набирается из нескольких) и надевается на провод индуктора.
Если импедансы не согласованы, то сильно падает КПД такого нагревателя и повышается риск выхода из строя питающего источника. При правильной настройке генератора, его частота должна совпадать с резонансной частотой выходного контура, либо может быть немного выше резонансной. В этом случае ключи питающего преобразователя работают в наиболее благоприятном режиме. Не желательно допускать ситуации, когда частота переключений инвертора будет ниже резонансной, т.е. сопротивление будет иметь емкостной характер.
С изменением массы или материала нагреваемого тела резонансная частота колебательного контура меняется. Для подстройки применяются различные методы: переключение емкости конденсаторной батареи, автоматическая подстройка частоты, ручная регулировка частоты, автогенераторы.
При достижении определенной температуры материала (точка Кюри) материал теряет магнитные свойства, в следствие чего резонансная частота контура резко меняется, а также увеличивается толщина скин-слоя.

Выбирая элементы контура следует учитывать, что при резонансе в контуре достигаются токи и напряжения большой амплитуды, которые могут превышать питающие в десятки раз. Индуктор следует изготавливать из медного провода или трубки достаточного сечения. Даже при небольшой мощности (порядка 200-500 Вт) индуктор начинает сильно нагреваться под действием собственного поля. Работать такой индуктор будет, но сильно перегреется за короткое время.
Для отвода тепла обычно применяется водное охлаждение, тогда индуктор делается из медной трубки.
В качестве контурных конденсаторов следует выбирать высоковольтные конденсаторы с достаточной реактивной мощностью, с низвикми диэлектрическими потерями, присоединять шинами/проводами c наименьшей длиной и индуктивностью, вблизи индуктора. Существуют специальные конденсаторы для работы в таких установках, но при относительно малой мощности (единицы кВт) успешно приметяются батареи полипропилленовых конденсаторов.

В индукционных печах и устройствах тепло в электропроводном нагреваемом теле выделяется токами, индуктированными в нем переменным электромагнитным полем. Таким образом, здесь осуществляется прямой нагрев.

Индукционный нагрев металлов основан на двух физических законах: и законе Джоуля-Ленца. Металлические тела (заготовки, детали и др.) помещают в , которое возбуждает в них вихревое . ЭДС индукции определяется скоростью изменения магнитного потока. Под действием ЭДС индукции в телах протекают вихревые (замкнутые внутри тел) токи, выделяющие теплоту . Эта ЭДС создает в металле , тепловая энергия, выделяемая данными токами, является причиной нагрева металла. Индукционный нагрев является прямым и бесконтактным. Он позволяет достигать температуры, достаточной для плавления самых тугоплавких металлов и сплавов.

Интенсивный индукционный нагрев возможен лишь в электромагнитных полях высокой напряженности и частоты, которые создают специальными устройствами - индукторами. Индукторы питают от сети 50 Гц (установки промышленной частоты) или от индивидуальных источников питания - генераторов и преобразователей средней и высокой частоты.

Простейший индуктор устройств косвенного индукционного нагрева низкой частоты - изолированный проводник (вытянутый или свернутый в спираль), помещенный внутрь металлической трубы или наложенный на ее поверхность. При протекании по проводнику-индуктору тока в трубе наводятся греющие ее . Теплота от трубы (это может быть также тигель, емкость) передается нагреваемой среде (воде, протекающей по трубе, воздуху и т. д.).

Наиболее широко применяется прямой индукционный нагрев металлов на средних и высоких частотах. Для этого используют индукторы специального исполнения. Индуктор испускает , которая падает на нагреваемое тело и затухает в нем. Энергия поглощенной волны преобразуется в теле в теплоту. Эффективность нагрева тем выше, чем ближе вид испускаемой электромагнитной волны (плоская, цилиндрическая и т. д.) к форме тела. Поэтому для нагрева плоских тел применяют плоские индукторы, цилиндрических заготовок - цилиндрические (соленоидные) индукторы. В общем случае они могут иметь сложную форму, обусловленную необходимостью концентрации электромагнитной энергии в нужном направлении.

Особенностью индукционного ввода энергии является возможность регулирования пространственного расположения зоны протекания вихревых токов. Во-первых, вихревые токи протекают в пределах площади, охватываемой индуктором. Нагревается только та часть тела, которая находится в магнитной связи с индуктором независимо от общих размеров тела. Во-вторых, глубина зоны циркуляции вихревых токов и, следовательно, зоны выделения энергии зависит, кроме других факторов, от частоты тока индуктора (увеличивается при низких частотах и уменьшается с повышением частоты). Эффективность передачи энергии от индуктора к нагреваемому току зависит от величины зазора между ними и повышается при его уменьшении.

Индукционный нагрев применяют для поверхностной закалки стальных изделий, сквозного нагрева под пластическую деформацию (ковку, штамповку, прессование и т. д.), плавления металлов, термической обработки (отжиг, отпуск, нормализация, закалка), сварки, наплавки, пайки металлов.

Косвенный индукционный нагрев применяют для обогрева технологического оборудования (трубопроводы, емкости и т. д.), нагрева жидких сред, сушки покрытий, материалов (например, древесины). Важнейший параметр установок индукционного нагрева - частота. Для каждого процесса (поверхностная закалка, сквозной нагрев) существует оптимальный диапазон частот, обеспечивающий наилучшие технологические и экономические показатели. Для индукционного нагрева используют частоты от 50Гц до 5Мгц.

Преимущества индукционного нагрева

1) Передача электрической энергии непосредственно в нагреваемое тело позволяет осуществить прямой нагрев проводниковых материалов. При этом повышается скорость нагрева по сравнению с установками косвенного действия, в которых изделие нагревается только с поверхности.

2) Передача электрической энергии непосредственно в нагреваемое тело не требует контактных устройств. Это удобно в условиях автоматизированного поточного производства, при использовании вакуумных и защитных средств.

3) Благодаря явлению поверхностного эффекта максимальная мощность, выделяется в поверхностном слое нагреваемого изделия. Поэтому индукционный нагрев при закалке обеспечивает быстрый нагрев поверхностного слоя изделия. Это позволяет получить высокую твердость поверхности детали при относительно вязкой середине. Процесс поверхностной индукционной закалки быстрее и экономичнее других методов поверхностного упрочнения изделия.

4) Индукционный нагрев в большинстве случаев позволяет повысить производительность и улучшить условия труда.

Индукционные плавильные печи

Индукционную печь или устройство можно рассматривать как своего рода трансформатор, в котором первичная обмотка (индуктор) подключена к источнику переменного тока, а вторичной обмоткой служит само нагреваемое тело.

Для рабочего процесса индукционных плавильных печей характерно электродинамическое и тепловое движение жидкого металла в ванне или тигле, способствующее получению однородного по составу металла и его равномерной температуры по всему объему, а также малый угар металла (в несколько раз меньше, чем в дуговых печах).

Индукционные плавильные печи применяют при производстве литья, в том числе фасонного, из стали, чугуна, цветных металлов и сплавов.

Индукционные плавильные печи можно разделить на канальные печи промышленной частоты и тигельные печи промышленной, средней и высокой частоты.

Индукционная канальная печь представляет собой трансформатор, обычно промышленной частоты (50 Гц). Вторичной обмоткой трансформатора служит виток из расплавленного металла. Металл заключен в кольцевом канале из огнеупора. Основной магнитный поток наводит в металле канала ЭДС, ЭДС создает ток, ток нагревает металл, поэтому, индукционная канальная печь подобна трансформатору, работающему в режиме короткого замыкания. Индукторы канальных печей выполняют из продольной медной трубки, он имеет водяное охлаждение, канальная часть подового камня охлаждается от вентилятора или от централизованной воздушной системы.

Индукционные канальные печи предназначены для непрерывной работы с редкими переходами с одной марки металла на другую. Индукционные канальные печи, в основном применяют для плавки алюминия и его сплавов, а также меди и некоторых ее сплавов. Другие серии печей специализированы как миксеры для выдержки и перегрева жидкого чугуна, цветных металлов и сплавов перед разливкой в литейные формы.

Работа индукционной тигельной печи основана на поглощении электромагнитной энергии проводящей садки. Садка размещена внутри цилиндрической катушки - индуктора. С электрической точки зрения, индукционная тигельная печь представляет собой короткозамкнутый воздушный трансформатор, вторичной обмоткой которого является проводящая садка.

Индукционные тигельные печи используют преимущественно для плавки металлов на фасонное литье при периодическом режиме работы, а также вне зависимости от режима работы - для плавки некоторых сплавов, например бронз, которые пагубно влияют на футеровку канальных печей.

Плавка металла методом индукции широко применяется в разных отраслях: металлургии, машиностроении, ювелирном деле. Простую печь индукционного типа для плавки металла в домашних условиях можно собрать своими руками.

Нагрев и плавка металлов в индукционных печах происходят за счет внутреннего нагрева и изменения кристаллической решетки металла при прохождении через них высокочастотных вихревых токов. В основе этого процесса лежит явление резонанса, при котором вихревые токи имеют максимальное значение.

Чтобы вызвать протекание вихревых токов через расплавляемый металл, его помещают в зону действия электромагнитного поля индуктора - катушки. Она может иметь форму спирали, восьмерки или трилистника. Форма индуктора зависит от размеров и формы нагреваемой заготовки.

Катушка индуктора подключается к источнику переменного тока. В производственных плавильных печах используют токи промышленной частоты 50 Гц, для плавки небольших объемов металлов в ювелирном деле используют высокочастотные генераторы, как более эффективные.

Виды

Вихревые токи замыкаются по контуру, ограниченному магнитным полем индуктора. Поэтому нагрев токопроводящих элементов возможен как внутри катушки, так и с внешней ее стороны.

    Поэтому индукционные печи бывают двух типов:
  • канальные, в которых емкостью для плавки металлов являются каналы, расположенные вокруг индуктора, а внутри него расположен сердечник;
  • тигельные, в них используется специальная емкость - тигель, выполненный из жаропрочного материала, обычно съемный.

Канальная печь слишком габаритная и рассчитана на промышленные объемы плавки металлов. Её используют при выплавке чугуна, алюминия и других цветных металлов.
Тигельная печь довольно компактна, ей пользуются ювелиры, радиолюбители, такую печь можно собрать своими руками и применять в домашних условиях.

Устройство

    Самодельная печь для плавки металлов имеет довольно простую конструкцию и состоит из трех основных блоков, помещенных в общий корпус:
  • генератор переменного тока высокой частоты;
  • индуктор - спиралевидная обмотка из медной проволоки или трубки, выполненная своими руками;
  • тигель.

Тигель помещают в индуктор, концы обмотки подключают к источнику тока. При протекании тока по обмотке вокруг нее возникает электромагнитное поле с переменным вектором. В магнитном поле возникают вихревые токи, направленные перпендикулярно его вектору и проходящие по замкнутому контуру внутри обмотки. Они проходят через металл, положенный в тигель, при этом нагревая его до температуры плавления.

Достоинства индукционной печи:

  • быстрый и равномерный нагрев металла сразу после включения установки;
  • направленность нагрева - греется только металл, а не вся установка;
  • высокая скорость плавления и однородность расплава;
  • отсутствует испарение легирующих компонентов металла;
  • установка экологически чиста и безопасна.

В качестве генератора индукционной печи для плавки металла может быть использован сварочный инвертор. Также можно собрать генератор по представленным ниже схемам своими руками.

Печь для плавки металла на сварочном инверторе

Эта конструкция отличается простотой и безопасностью, так как все инверторы оборудованы внутренними защитами от перегрузок. Вся сборка печи в этом случае сводится к изготовлению своими руками индуктора.

Выполняют его обычно в форме спирали из медной тонкостенной трубки диаметром 8-10 мм. Ее сгибают по шаблону нужного диаметра, располагая витки на расстоянии 5-8 мм. Количество витков - от 7 до 12, в зависимости от диаметра и характеристик инвертора. Общее сопротивление индуктора должно быть таким, чтобы не вызывать перегрузки по току в инверторе, иначе он будет отключаться внутренней защитой.

Индуктор можно закрепить в корпусе из графита или текстолита и установить внутрь тигель. Можно просто поставить индуктор на термостойкую поверхность. Корпус не должен проводить ток, иначе замыкание вихревых токов будет проходить через него, и мощность установки снизится. По этой же причине не рекомендуется располагать в зоне плавления посторонние предметы.

При работе от сварочного инвертора его корпус нужно обязательно заземлять! Розетка и проводка должны быть рассчитаны на потребляемый инвертором ток.


В основе системы отопления частного дома лежит работа печи или котла, высокая производительность и долгий бесперебойный срок службы которых зависит как от марки и установки самих отопительных приборов, так и от правильного монтажа дымохода.
вы найдёте рекомендации по выбору твердотопливного котла, а в следующей — познакомитесь с видами и правилами :

Индукционная печь на транзисторах: схема

Существует множество различных способов собрать своими руками. Достаточно простая и проверенная схема печи для плавки металла представлена на рисунке:

    Чтобы собрать установку своими руками, понадобятся следующие детали и материалы:
  • два полевых транзистора типа IRFZ44V;
  • два диода UF4007 (можно также использовать UF4001);
  • резистор 470 Ом, 1 Вт (можно взять два последовательно соединенных по 0,5 Вт);
  • пленочные конденсаторы на 250 В: 3 штуки емкостью 1 мкФ; 4 штуки - 220 нФ; 1 штука - 470 нФ; 1 штука - 330 нФ;
  • медный обмоточный провод в эмалевой изоляции Ø1,2 мм;
  • медный обмоточный провод в эмалевой изоляции Ø2 мм;
  • два кольца от дросселей, снятых с компьютерного блока питания.

Последовательность сборки своими руками:

  • Полевые транзисторы устанавливают на радиаторы. Поскольку схема в процессе работы сильно греется, радиатор должны быть достаточно большими. Можно установить их и на один радиатор, но тогда нужно изолировать транзисторы от металла с помощью прокладок и шайб из резины и пластика. Распиновка полевых транзисторов приведена на рисунке.

  • Необходимо изготовить два дросселя. Для их изготовления медную проволоку диаметром 1,2 мм наматывают на кольца, снятые с блока питания любого компьютера. Эти кольца состоят их порошкового ферромагнитного железа. На них необходимо намотать от 7 до 15 витков проволоки, стараясь выдерживать расстояние между витками.

  • Собирают перечисленные выше конденсаторы в батарею общей емкостью 4,7 мкФ. Соединение конденсаторов - параллельное.

  • Выполняют обмотку индуктора из медной проволоки диаметром 2 мм. Наматывают на подходящий по диаметру тигля цилиндрический предмет 7-8 витков обмотки, оставляют достаточно длинные концы для подключения к схеме.
  • Соединяют элементы на плате в соответствии со схемой. В качестве источника питания используют аккумулятор на 12 В, 7,2 A/h. Потребляемый ток в режиме работы - около 10 А, емкости аккумулятора в этом случае хватит примерно на 40 минут.При необходимости изготовляют корпус печи из термостойкого материала, например, текстолита.Мощность устройства можно изменить, поменяв количество витков обмотки индуктора и их диаметр.
При продолжительной работе элементы нагревателя могут перегреваться! Для их охлаждения можно использовать вентилятор.

Индукционный нагреватель для плавки металла: видео

Индукционная печь на лампах

Более мощную индукционную печь для плавки металлов можно собрать своими руками на электронных лампах. Схема устройства приведена на рисунке.

Для генерации высокочастотного тока используются 4 лучевые лампы, соединенные параллельно. В качестве индуктора используется медная трубка диаметром 10 мм. Установка оснащена подстроечным конденсатором для регулировки мощности. Выдаваемая частота - 27,12 МГц.

Для сборки схемы необходимы:

  • 4 электронные лампы - тетрода, можно использовать 6L6, 6П3 или Г807;
  • 4 дросселя на 100…1000 мкГн;
  • 4 конденсатора на 0,01 мкФ;
  • неоновая лампа-индикатор;
  • подстроечный конденсатор.

Сборка устройства своими руками:

  1. Из медной трубки выполняют индуктор, сгибая ее в форме спирали. Диаметр витков - 8-15 см, расстояние между витками не менее 5 мм. Концы лудят для пайки к схеме. Диаметр индуктора должен быть больше диаметра помещаемого внутрь тигля на 10 мм.
  2. Размещают индуктор в корпусе. Его можно изготовить из термостойкого не проводящего ток материала, либо из металла, предусмотрев термо- и электроизоляцию от элементов схемы.
  3. Собирают каскады ламп по схеме с конденсаторами и дросселями. Каскады соединяют в параллель.
  4. Подключают неоновую лампу-индикатор - она будет сигнализировать о готовности схемы к работе. Лампу выводят на корпус установки.
  5. В схему включают подстроечный конденсатор переменной емкости, его ручку также выводят на корпус.


Для всех любителей деликатесов, приготовленных методом холодного копчения, предлагаем узнать как быстро и просто своими руками сделать коптильню, а познакомиться с фото и видео инструкцией по изготовлению генератора дыма для холодного копчения.

Охлаждение схемы

Промышленные плавильные установки оснащены системой принудительного охлаждения на воде или антифризе. Выполнение водяного охлаждения в домашних условиях потребует дополнительных затрат, сопоставимых по цене со стоимостью самой установки для плавки металла.

Выполнить воздушное охлаждение с помощью вентилятора можно при условии достаточно удаленного расположения вентилятора. В противном случае металлическая обмотка и другие элементы вентилятора будут служить дополнительным контуром для замыкания вихревых токов, что снизит эффективность работы установки.

Элементы электронной и ламповой схемы также способны активно нагреваться. Для их охлаждения предусматривают теплоотводящие радиаторы.

Меры безопасности при работе

  • Основная опасность при работе - опасность получения ожогов от нагреваемых элементов установки и расплавленного металла.
  • Ламповая схема включает элементы с высоким напряжением, поэтому её нужно разместить в закрытом корпусе, исключив случайное прикосновение к элементам.
  • Электромагнитное поле способно воздействовать на предметы, находящиеся вне корпуса прибора. Поэтому перед работой лучше надеть одежду без металлических элементов, убрать из зоны действия сложные устройства: телефоны, цифровые камеры.
Не рекомендуется использовать установку людям с вживлёнными кардиостимуляторами!

Печь для плавки металлов в домашних условиях может использоваться также для быстрого нагрева металлических элементов, например, при их лужении или формовке. Характеристики работы представленных установок можно подогнать под конкретную задачу, меняя параметры индуктора и выходной сигнал генераторных установок - так можно добиться их максимальной эффективности.

Прежде чем разговаривать о принципе работы индукционного нагрева следует вообще выяснить, что же это такое. – это процесс технологичной обработки металлов под воздействием высоких температур. На производстве индукционный нагрев используется для сварки, плавки, пайки ТВЧ, закалки, ковки, деформации и термообработки. Современные предприятия по обработке металла используют индукционный нагрев, потому что он смог привлечь своими достоинствами,

среди которых хочется отметить высокую скорость работу, хорошие результаты, энергетическую эффективность оборудования, а также автоматизированный контроль над рабочим процессом.
Принципы индукционного нагрева для производственных процессов применяются примерно с 20-х годов. В период Второй мировой войны ученые старались как можно быстрее развивать новейшие технологии, чтобы использоваться их в сложившейся ситуации. Как раз во время войны возникла острая необходимость в изобретении надежного и быстрого процесса, дающего возможность получать более прочные металлические изделия.
В настоящее время ученые нацелены на поиск технологий, позволяющих производить все необходимые технологичные процессы со сбережением природных ресурсов и времени. Конечно же, повышенный контроль качества также оказал немаловажное влияние на создание оборудования, способного производить быструю, экономичную и качественную работу. На сегодняшний день индукционный нагрев активно применяется производителями на металлургических предприятиях.

Как работает индукционный нагрев

Переменный ток, подающийся от генератора электрической энергии, оказывает воздействие на первичную обмотку трансформатора, создавая мощное электромагнитное поле. Применяя на практике закон Фарадея о воздействии на вторичную обмотку, размещенную внутри образовавшегося магнитного поля, можно получить электрическую энергию.
Если рассматривать стандартную конструкцию индукционного нагревателя , то будет видно, что переменный ток проходит через индуктор (который, как правило, выполнен в виде медной катушки) и образует тепловую энергию в металлическом изделии, размещенном в индукторе. В данном случае индуктор – это первичная обмотка трансформатора, а размещенная в нем деталь – вторичная.
Электромагнитное поле, проходящее через металлическое изделие, создает в нем так называемые токи Фуко. Токи Фуко имеют направление противоположное электрическому сопротивлению металла. Тепловая энергия образуется непосредственно в металле без достижения прямого контакта между металлом и индуктором. Данный эффект принято называть «Эффектом Джоуля», так как он основан на первом законе ученого.

Индукционный нагрев - достоинства

Выше мы уже говорили о том, что масштабное применение индукционного нагрева началось не просто так, и всему причиной стали достоинства, которыми обладает индукционное оборудование. Ниже мы более подробно рассмотрим эти преимущества.
Какими же преимуществами обладает оборудование индукционного нагрева, если сравнивать его с альтернативными способами обработки металла?

  1. Высокая производительность. Индукционный нагрев позволяет повысить производительность предприятия благодаря быстрому запуску установок и нагреву изделий за короткий промежуток времени. Нагрев происходит почти мгновенно после запуска установки. Нет необходимости предварительно нагревать или охлаждать оборудование.
  2. Прочность конструкции. Тепловая энергия, как уже было рассмотрено выше, образуется непосредственно в металле, что позволяет сохранить целостность изделия. При использовании индукционного нагревателя в производстве получается минимальное количество брака. Чтобы получить максимальный эффект от обработки металла можно размещать металл в специальной вакуумной среде, защищая его тем самым от окисления.
  3. Высокая энергетическая эффективность. Индукционный нагреватель позволяет экономить электрическую энергию, используя лишь ее малое количество для образования мощного электромагнитного поля. Все ожидания после запуска установки сведены к минимуму, что так же экономит производственные ресурсы, и позволяет получить изделие с более низкой себестоимостью.
  4. Автоматизированный рабочий процесс. Благодаря программному обеспечению, установленному в индукционную установку, весь рабочий процесс может контролироваться автоматически, что дает возможность получения более точных результатов обработки.
  5. Чистая экология. Индукционный нагрев безопасен с экологической точки зрения. Во время работы индукционной установки в воздух не выделяются никакие вредные вещества, а так как открытого пламени нет, то отсутствует и задымление. Индукционный нагреватель имеет высокий уровень пожаробезопасности.

Индукционный нагрев – это отличный современный способ, позволяющий производить качественную и быструю обработку металла высокими температурами.
Задать любой интересующий вопрос, касающийся индукционного оборудования, вы можете на нашем форуме или, позвонив одному из специалистов компании, все телефоны указаны в разделе «Контакты».

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ

Начальный период. Индукционный нагрев проводников основан на физическом явлении электромагнитной индукции, открытом М. Фарадеем в 1831 г. Теорию индукционного нагрева начали разрабатывать О. Хэвисайд (Англия, 1884 г.), С. Ферранти, С. Томпсон, Ивинг. Их работы явились основой для создания техники индукционного нагрева. Так как при индукционном нагреве теплота выделяется в проводящем теле - слое, равном глубине проникновения электромагнитного поля, то появляются возможности точного управления температурой для обеспечения качественного нагрева при высокой производительности. Другим преимуществом является бесконтактность нагрева.

Индукционные канальные печи с открытым каналом. Одна из первых известных конструкций индукционной канальной печи (ИКП) была предложена С. Ферранти (Италия) в 1887 г. Печь имела керамический канал, а плоские катушки индуктора были размещены над и под этим каналом. В 1890г. Е.А. Колби (США) предложил конструкцию печи, у которой индуктор охватывает круговой канал снаружи.

Первую промышленную печь со стальным сердечником и индуктором, размещенным внутри канала (рис. 7.7), создал в 1900 г. Кьеллин (Швеция). Мощность печи 170 кВт, емкость до 1800 кг, частота 15 Гц. Питание от специального генератора пониженной частоты, что необходимо из-за низкого значения коэффициента мощности. К 1907 г. в эксплуатации находились 14 подобных печей.

Рис. 7.7. Эскиз индукционной печи с открытым каналом, созданной Кьеллииым1 - канал; 2 - индуктор; 3 - магнитопровод

В 1905 г. Рёхелинг-Роденхаузер (Германия) сконструировал многофазные канальные печи (с двумя и тремя индукторами), в которых каналы соединены с ванной, питание от сети 50 Гц. В последующих конструкциях печей использовались также закрытые каналы для плавки цветных металлов. В 1918 г. В. Рон (Германия) построил вакуумную ИКП по типу печи Кьеллина (давление 2–5 мм рт.ст.), что позволило получить металл с лучшими механическими свойствами.

В связи с рядом преимуществ печей с закрытым каналом развитие печей с открытым каналом приостановилось. Однако были продолжены попытки использования таких печей для плавки стали.

В 30-х годах в США для переплава скрапа нержавеющей стали использовалась однофазная ИКП емкостью 6 т с открытым каналом и питанием от генератора мощностью 800 кВт и частотой 8,57 Гц. Печь работала в дуплекс-процессе с дуговой печью. В 40–50-е годы в Италии применялись ИКП с открытым каналом для плавки стали емкостью 4–12 т, изготовленные фирмой «Таглиаферри». В дальнейшем от использования таких печей отказались, так как они уступали по своим характеристикам дуговым и индукционным тигельным сталеплавильным печам.

Индукционные канальные печи с закрытым каналом. С 1916 г. стали разрабатываться вначале опытные, а затем промышленные ИКП с закрытым каналом. Серия ИКП с закрытым каналом разработана фирмой «Аякс - Уатт» (США). Это шахтные однофазные печи с вертикальным каналом для плавки медноцинковых сплавов мощностью 75 и 170 кВ?А и емкостью 300 и 600 кг. Они явились основой для разработок ряда фирм.

В те же годы во Франции были изготовлены шахтные печи с горизонтальной трехфазной индукционной единицей (мощностью 150, 225 и 320 кВт). В Англии фирма «Дженерал электрик лимитед» предложила модификацию печи с двумя каналами на индуктор, при их несимметричном расположении, что вызывает циркуляцию расплава и снижение перегрева.

Печи Э. Русса (Германия) выпускались с двумя и тремя каналами на индуктор (вертикальное и горизонтальное исполнение). Э. Руссом также была предложена конструкция сдвоенной индукционной единицы (ИЕ), подключаемой к двум фазам.

В СССР в 30-е годы ИКП по типу печей фирмы «Аякс - Уатт» стали выпускаться на Московском электрозаводе. В 50-е годы ОКБ «Электропечь» разработало печи для плавки меди и ее сплавов емкостью 0, 4–6,0 т, а затем и 16 т. В 1955 г. на заводе в г. Белая Калитва пущена ИКП для плавки алюминия емкостью 6 т.

В 50-е годы в США и Западной Европе ИКП стали широко применяться в качестве миксеров при плавке чугуна в дуплекс-процессе с вагранкой или дуговой электропечью. Для увеличения мощности и снижения перегрева металла в канале разрабатывались конструкции ИЕ с однонаправленным движением расплава (Норвегия). Тогда же были разработаны отъемные ИЕ. В 70-е годы фирма «Аякс магнетермик» разработала сдвоенные ИЕ, мощность которых в настоящее время достигает 2000 кВт. Подобные разработки в те же годы выполнены и во ВНИИЭТО. В разработках ИКП различных типов активно участвовали Н.В. Веселовский, Э.П. Леонова, М.Я. Столов и др.

В 80-е годы развитие ИКП в нашей стране и за рубежом было направлено на увеличение областей применения и расширение технологических возможностей, например применение ИКП для получения труб из цветных металлов методом вытягивания из расплава.

Индукционные тигельные печи. Так как индукционные тигельные печи (ИТП) малой емкости могут эффективно работать только на частотах выше 50 Гц, то их создание сдерживалось из-за отсутствия соответствующих источников питания - преобразователей частоты. Тем не менее в 1905–1906 гг. ряд фирм и изобретателей предложили и запатентовали ИТП, к ним относятся фирма «Шнейдер - Крезо» (Франция), О. Цандер (Швеция), Герден (Англия). В это же время конструкцию ИТП разработал А.Н. Лодыгин (Россия).

Первую промышленную ИТП с искровым высокочастотным генератором разработал в 1916 г. Э.Ф. Нортруп (США). С 1920 г. эти печи стала выпускать фирма «Аякс электротермию). В это же время ИТП с питанием от вращающегося искрового разрядника разрабатывает Ж. Рибо (Франция). Фирма «Метрополитен - Виккерс» создала ИТП высокой и промышленной частоты. Вместо искровых генераторов использовались машинные преобразователи с частотой до 3000 Гц и мощностью 150 кВ?А.

В.П. Вологдин в 1930–1932 гг. создал промышленные ИТП емкостью 10 и 200 кг с питанием от машинного преобразователя частоты. В 1937 г. он же построил ИТП с питанием от лампового генератора. В 1936 г. А.В. Донской разработал универсальную индукционную печь с ламповым генератором мощностью 60 кВ?А.

В 1938 г. для питания ИТП (мощность 300 кВт, частота 1000 Гц) фирма «Броун - Бовери» использовала инвертор на многоанодном ртутном вентиле. С 60-х годов стали использоваться тиристорные инверторы для питания индукционных установок. С увеличением емкости ИТП стало возможным эффективное применение питания током промышленной частоты.

В 40–60-х годах ОКБ «Электропечь» разработало несколько типов ИТП: повышенной частоты для плавки алюминия емкостью 6 т (1959 г.), чугуна емкостью 1 т (1966 г.). В 1980 г. на заводе в г. Баку изготовлена печь емкостью 60 т для плавки чугуна (разработка ВНИИЭТО по лицензии фирмы «Броун - Бовери»). Большой вклад в разработку ИТП во ВНИИЭТО внесли Э.П. Леонова, В.И. Кризенталь, А.А. Простяков и др.

В 1973 г. фирма «Аякс магнетермик» совместно с исследовательской лабораторией фирмы «Дженерал моторе» разработала и ввела в эксплуатацию горизонтальную тигельную печь непрерывного действия для плавки чугуна емкостью 12 т и мощностью 11 МВт.

Начиная с 50-х годов стали развиваться специальные виды индукционной плавки металлов:

вакуумная в керамическом тигле;

вакуумная в гарнисаже;

вакуумная в холодном тигле;

в электромагнитном тигле;

во взвешенном состоянии;

с использованием комбинированного нагрева.

Вакуумные индукционные печи (ВИП) до 1940 г. применялись только в лабораторных условиях. В 50-х годах некоторые фирмы, в частности «Хереус», стали разрабатывать промышленные ВИП, единичная емкость которых стала быстро возрастать: 1958 г. - 1–3 т, 1961–5 т, 1964–15–27 т, 1970–60 т. В 1947 г. МосЗЭТО изготовил первую вакуумную печь емкостью 50 кг, а с 1949 г. начал серийное производство ВИП емкостью 100 кг. В середине 80-х годов производственное объединение «Сибэлектротерм» по разработкам ВНИИЭТО изготавливало модернизированные ВИП емкостью 160, 600 и 2500 кг для плавки специальных сталей.

Индукционная плавка химически активных сплавов в гарнисажных печах и печах с медным водоохлаждаемым (холодным) тиглем стала применяться в 50-х годах. Печь с порошкообразным гарнисажем была разработана Н.П. Глухановым, Р.П. Жежериным и др. в 1954 г., а печь с монолитным гарнисажем - М.Г. Коганом в 1967 г. Идея индукционной плавки в холодном тигле предложена еще в 1926 г. в Германии фирмой «Сименс - Гальске», но применения не нашла. В 1958 г. В ИМЕТ совместно с ВНИИ токов высокой частоты им. В.П. Вологдина (ВНИ-ИТВЧ) под руководством А.А. Фогеля проведены опыты по индукционной плавке титана в холодном тигле.

Стремление снизить загрязнение металла и тепловые потери в холодном тигле привели к использованию электромагнитных сил для отжатия металла от стенок, т.е. к созданию «электромагнитного тигля» (Л.Л. Тир, ВНИИЭТО, 1962 г.)

Плавка металлов во взвешенном состоянии для получения особо чистых металлов была предложена в Германии (О. Мук) еще в 1923 г., но не получила распространения из-за отсутствия источников питания. В 50-е годы этот метод начал развиваться во многих странах. В СССР много работали в этом направлении сотрудники ВНИИТВЧ под руководством А.А. Фогеля.

Плавильные ИКП и ИТП комбинированного нагрева стали применяться с 50-х годов вначале с использованием мазутных и газовых горелок, например ИКП для переплава алюминиевой стружки (Италия) и ИТП для чугуна (Япония). Позднее получили распространение плазменно-индукционные тигельные печи, например разработанная ВНИИЭТО в 1985 г. серия опытно-промышленных печей емкостью 0,16–1,0 т.

Установки индукционной поверхностной закалки. Первые опыты по индукционной поверхностной закалке проведены в 1925 г. В.П. Вологдиным по инициативе инженера Путиловского завода Н.М. Беляева, которые были признаны неудачными, так как в то время стремились к сквозной закалке. В 30-х годах В.П. Вологдин и Б.Я. Романов возобновили эти работы и в 1935 г. получили патенты на закалку с использованием токов высокой частоты. В 1936 г. В.П. Вологдин и А.А. Фогель получили патент на индуктор для закалки шестерен. В.П. Вологдин и его сотрудники разрабатывали все элементы закалочной установки: вращающийся преобразователь частоты, индукторы и трансформаторы (рис. 7.8).

Рис. 7.8. Закалочная установка для последовательной закалки

1 - закаливаемое изделие; 2 - индуктор; 3 - закалочный трансформатор; 4 - преобразователь частоты; 5 - конденсатор

С 1936 г. Г.И. Бабат и М.Г. Лозинский на заводе «Светлана» (Ленинград) исследовали процесс индукционной закалки с использованием высоких частот при питании от лампового генератора. С 1932 г. закалка током средней частоты стала внедряться фирмой ТОККО (США).

В Германии в 1939 г. Г.В. Зойлен осуществил поверхностную закалку коленчатых валов на заводах фирмы АЕГ. В 1943 г. К. Кегель предложил специальную форму индуктирующего провода для закалки зубчатого колеса.

Широкое применение поверхностной закалки началось с конца 40-х годов. За 25 лет с 1947 г. ВНИИТВЧ разработал свыше 300 закалочных устройств, в том числе введены в эксплуатацию автоматическая линия для закалки коленчатых валов и установка для закалки железнодорожных рельсов по всей длине (1965 г.). В 1961 г. пущена первая установка для закалки шестерен из стали пониженной прокаливаемости на автозаводе им. Лихачева (ЗИЛ) (технология разработана К.З. Шепеляковским).

Одним из направлений развития индукционной термообработки в последние годы стали технологии закалки и отпуска труб нефтяного сортамента и газопроводных труб большого диаметра (820–1220 мм), строительных арматурных стержней, а также упрочнения железнодорожных рельсов.

Установки сквозного нагрева. Применение индукционного нагрева металлов для различных целей, кроме плавки, на первом этапе носило поисковый характер. В 1918 г. М.А. Бонч-Бруевич, а затем и В.П. Вологдин применили для нагрева анодов электронных ламп при их вакуумировании (дегазации) токи высокой частоты. В конце 30-х годов в лаборатории завода «Светлана» проводились опыты по использованию индукционного нагрева до температуры 800–900°С при обработке стального вала диаметром 170 и длиной 800 мм на токарном станке. Использовался ламповый генератор мощностью 300 кВт и частотой 100–200 кГц.

С 1946 г. в СССР начались работы по использованию индукционного нагрева при обработке давлением. В 1949 г. введен в эксплуатацию первый кузнечный нагреватель на ЗИЛе (ЗИСе). Эксплуатация первой индукционной кузницы начата на Московском заводе малолитражных автомобилей (МЗМА, позднее АЗЛК) в 1952 г. Интересная двухчастотная установка (60 и 540 Гц) для нагрева стальных заготовок (сечение - квадрат 160x160 мм) под обработку давлением была запущена в Канаде в 1956 г. Подобная же установка разработана в ВНИИТВЧ (1959 г.). Промышленная частота используется при этом для нагрева до точки Кюри.

Для прокатного производства в 1963 г. ВНИИТВЧ изготовил нагреватель слябов (габариты 2,5x0,38x1,2 м) мощностью 2000 кВт на частоту 50 Гц.

В 1969 г. на металлургическом заводе фирмы «Маклаут стил корп.» (США) применен индукционный нагрев стальных слябов массой около 30 т (габариты 7,9x0,3x1,5 м) с использованием шести технологических линий (18 индукторов промышленной частоты общей мощностью 210 МВт).

Индукторы имели специальную форму, обеспечивающую равномерность нагрева сляба. Работы по применению индукционного нагрева в металлургии велись также и во ВНИИЭТО (П.М. Чайкин, С.А. Яицков, А.Э. Эрман).

В конце 80-х годов в СССР индукционный нагрев использовался приблизительно в 60 кузнечных цехах (прежде всего на заводах автотракторной и оборонной промышленности) с общей мощностью индукционных нагревателей до 1 млн. кВт.

Низкотемпературный нагрев на промышленной частоте. В 1927–1930 гг. на одном из уральских оборонных заводов начались работы по индукционному нагреву на промышленной частоте (Н.М. Родигин). В 1939 г. там с успехом работали достаточно мощные индукционные нагревательные установки для термообработки изделий из легированной стали.

В ЦНИИТмаше (В.В. Александров) также проводились работы по применению промышленной частоты для термообработки, нагрева под посадку и т.д. Ряд работ по низкотемпературному нагреву выполнен под руководством А.В. Донского. В НИИжелезобетона (НИИЖБ), Фрунзенском политехническом институте и других организациях в 60–70-х годах проводились работы по термообработке железобетонных изделий с использованием индукционного нагрева на частоте 50 Гц. ВНИИЭТО также разработал ряд промышленных установок низкотемпературного нагрева для подобных целей. Разработки МЭИ (А.Б. Кувалдин) в области индукционного нагрева ферромагнитной стали были использованы в установках для подогрева деталей под наплавку, термообработки стали и железобетона, обогрева химических реакторов, пресс-форм и др. (70–80-е годы).

Высокочастотная зонная плавка полупроводников. Метод зонной плавки был предложен в 1952 г. (В.Г. Пфанн, США). Работы по высокочастотной бестигельной зонной плавке в нашей стране начались в 1956 г., и во ВНИИТВЧ был получен монокристалл кремния диаметром 18 мм. Созданы различные модификации установок типа «Кристалл» с индуктором внутри вакуумной камеры (Ю.Э. Недзвецкий). В 50-е годы изготовление установок для вертикальной бестигельной зонной плавки кремния с индуктором снаружи вакуумной камеры (кварцевой трубы) осуществлялось на заводе «Платиноприбор» (Москва) совместно с Государственным институтом редких металлов (Гиредмет). Начало серийного производства установок «Кристалл» для выращивания монокристаллов кремния относится к 1962 г. (на Таганрогском ЗЭТО). Диаметр получаемых монокристаллов достиг 45 мм (1971 г.), а позднее и свыше 100 мм (1985 г.)

Высокочастотная плавка оксидов. В начале 60-х годов Ф.К. Монфорт (США) провел плавку оксидов в индукционной печи (выращивание монокристаллов ферритов при использовании токов высокой частоты - радиочастот). Тогда же А.Т Чэпмен и Г.В. Кларк (США) предложили технологию переплавления поликристаллического оксидного блока в холодном тигле. В 1965 г. Ж. Рибо (Франция) получил расплавы оксидов урана, тория и циркония при использовании радиочастот. Плавка этих оксидов происходит при высоких температурах (1700–3250 °С), и поэтому требуется большая мощность источника питания.

В СССР технология высокочастотной плавки оксидов разработана в Физическом институте АН СССР (A.M. Прохоров, В.В. Осико). Оборудование разрабатывали ВНИИТВЧ и Ленинградский электротехнический институт (ЛЭТИ) (Ю.Б. Петров, А.С. Васильев, В.И. Добровольская). Созданные ими установки «Кристалл» в 1990 г. имели общую мощность свыше 10 000 кВт, на них производились сотни тонн оксидов высокой степени чистоты в год.

Высокочастотный нагрев плазмы. Явление высокочастотного разряда в газе известно с 80-х годов XIX в. В 1926–1927 гг. Дж.Дж. Томсон (Англия) показал, что безэлектродный разряд в газе создается индуцированными токами, а Дж. Таунсенд (Англия, 1928 г.) объяснял разряд в газе действием электрического поля. Все эти исследования проводились при пониженных давлениях.

В 1940–1941 гг. Г.И. Бабат на заводе «Светлана» при дегазации электронных ламп с использованием высокочастотного нагрева наблюдал плазменный разряд, а затем впервые получил разряд при атмосферном давлении.

В 50-е годы в разных странах проводились работы по высокочастотной плазме (Т.Б. Рид, Ж. Рибо, Г. Баркхофф и др.). В СССР они велись с конца 50-х годов в Ленинградском политехническом институте (А.В. Донской, С.В. Дресвин), МЭИ (М.Я. Смелянский, С.В. Кононов), ВНИТВЧ (И.П. Дашкевич) и др. Исследовались разряды в различных газах, конструкции плазмотронов и технологии с их использованием. Были созданы высокочастотные плазмотроны с кварцевой и с металлической (для мощностей до 100 кВт) водоохлаждаемой (создана в 1963 г.) камерами.

В 80-х годах высокочастотные плазмотроны мощностью до 1000 кВт на частоты 60 кГц - 60 МГц применялись для получения особо чистого кварцевого стекла, пигментного диоксида титана, новых материалов (например, нитридов и карбидов), особо чистых ультрадисперсных порошков и разложения отравляющих веществ.

Из книги История электротехники автора Коллектив авторов

7.1.1. РЕЗИСТИВНЫЙ НАГРЕВ Начальный период. Первые эксперименты по нагреву проводников электрическим током относятся к XVIII в. В 1749 г. Б. Франклин (США) при исследовании разряда лейденской банки обнаружил нагрев и расплавление металлических проволочек, а позднее по его

Из книги автора

7.1.2. ЭЛЕКТРОДУГОВОЙ НАГРЕВ Начальный период. В 1878–1880 гг. В. Сименс (Англия) выполнил ряд работ, которые легли в основу создания дуговых печей прямого и косвенного нагрева, в том числе однофазной дуговой печи емкостью 10 кг. Им было предложено использовать магнитное поле для

Из книги автора

Из книги автора

7.7.5. ПЛАЗМЕННЫЙ НАГРЕВ Начальный период. Начало работ по плазменному нагреву относится к 20-м годам XX в. Сам термин «плазма» ввел И. Ленгмюр (США), а понятие «квазинейтральная» - В. Шоттки (Германия). В 1922 г. X. Гердиен и А. Лотц (Германия) провели опыты с плазмой, полученной при

Из книги автора

7.1.6. ЭЛЕКТРОННО-ЛУЧЕВОЙ НАГРЕВ Начальный период. Техника электронно-лучевого нагрева (плавка и рафинирование металлов, размерная обработка, сварка, термообработка, нанесение покрытий испарением, декоративная обработка поверхности) создана на основе достижений физики,

Из книги автора

7.1.7. ЛАЗЕРНЫЙ НАГРЕВ Начальный период. Лазер (сокращение английского Light Amplification by Stimulated Emission of Radiation) создан во второй половине XX в. и нашел определенное применение в электротехнологии.Идею процесса вынужденного излучения высказал еще А. Эйнштейн в 1916 г. В 40-х годах В.А.

Статьи по теме: