Состав и строение земной коры. Внутреннее строение земли

ЗЕМНАЯ КОРА, верхняя твёрдая оболочка Земли, ограниченная снизу Мохоровичича границей. Термин «земная кора» появился в 18 веке в работах М. В. Ломоносова и в 19 веке в трудах Ч. Лайеля; с развитием контракционной гипотезы в 19 веке получил определённое значение в соответствии с идеей охлаждения Земли до тех пор, пока не образовалась кора (Дж. Дана). В основе представлений о составе, структуре и физических свойствах земной коры лежат геофизические данные о скоростях распространения сейсмических волн (в основном продольных, V p), которые на границе Мохоровичича при переходе к породам мантии Земли скачкообразно возрастают с 7,5-7,8 км/с до 8,1-8,2 км/с. Природа нижней границы земной коры, по-видимому, обусловлена изменением химического состава пород (основные породы - ультраосновные) либо фазовыми переходами (в системе габбро - эклогит).

Для земной коры характерна горизонтальная неоднородность (анизотропия), выражающаяся в различии состава, строения, мощности и других характеристик коры в пределах её отдельных структурных элементов: континентов и океанов, платформ и складчатых поясов, впадин и поднятий и др. Выделяют два главных типа земной коры - континентальную и океаническую.

Континентальная кора, распространённая в пределах континентов и микроконтинентов в океанах, имеет среднюю мощность 35-40 км, которая уменьшается до 25-30 км на континентальных окраинах (на шельфе) и в областях рифтогенеза и возрастает до 45-75 км в областях горообразования. В континентальной коре различают осадочный (V p до 4,5 км/с), «гранитный» (V p 5,1-6,4 км/с) и «базальтовый» (V p 6,1-7,5 км/с) слои. Осадочный слой отсутствует на щитах и менее крупных поднятиях фундамента древних платформ, а также в осевых зонах складчатых сооружений. Во впадинах молодых и древних платформ, передовых и межгорных прогибах складчатых сооружений мощность осадочного слоя достигает 10 км (редко 20-25 км). Он сложен преимущественно континентальными и мелководноморскими осадочными породами, возраст которых менее 1,7 миллиарда лет, а также платобазальтами (траппами), силлами магматических пород основного состава, туфами. Названия «гранитного» и «базальтового» слоёв условны и исторически связаны с выделением границы Конрада (V p 6,2 км/с), разделяющей слои, в которых скорости продольных сейсмических волн соответствуют скоростям в граните и базальте. Последующие исследования (в том числе сверхглубокое бурение) поставили под сомнение существование чёткой сейсмической границы, поэтому оба эти слоя объединяют в консолидированную кору. «Гранитный» слой выступает на поверхность в пределах щитов и массивов платформ и в осевых зонах складчатых сооружений; он также вскрыт скважинами сверхглубокого бурения (в том числе Кольской сверхглубокой скважиной на глубину свыше 12 км). Его мощность на платформах 15-20 км, в складчатых сооружениях 25-30 км. В пределах щитов древних платформ в состав этого слоя входят гнейсы, различные кристаллические сланцы, амфиболиты, мраморы, кварциты и гранитоиды, поэтому его часто называют гранитно-гнейсовым (V p 6-6,4 км/с). В фундаменте молодых платформ и в пределах молодых складчатых сооружений верхний слой консолидированной коры сложен менее метаморфизованными породами и содержит меньше гранитов, в связи с чем его также именуют гранитнометаморфическим (V p 5,1-6 км/с). Прямое изучение «базальтового» слоя континентальной коры невозможно. Значениям скоростей сейсмических волн, по которым он выделен, могут удовлетворять как магматические породы основного состава (базиты), так и породы, испытавшие высокую степень метаморфизма (гранулиты), поэтому нижний слой консолидированной коры иногда называют гранулит-базитовым. Отнесение к земной коре или верхней мантии пород со скоростями продольных сейсмических волн более 7 км/с спорно. Возраст древнейших пород консолидированной коры достигает 4 миллиардов лет.

Основные отличия океанической коры от континентальной - отсутствие «гранитного» слоя, существенно меньшая мощность (в среднем 5-7 км), более молодой возраст (юра, мел, кайнозой; менее 170 миллионов лет), большая латеральная однородность. Океаническая кора, строение которой изучено глубоководным бурением, драгированием, наблюдением с подводных аппаратов в стенках разломов, состоит из трёх слоёв. Первый слой, или осадочный, состоит из пелагических кремнистых, карбонатных и глинистых осадков (V p 1,6-5,4 км/с). В направлении континентальных подножий его мощность возрастает до 10-15 км. Осадочный слой может отсутствовать в осевых зонах срединно-океанических хребтов. В глубоководных впадинах задуговых бассейнов, часть из которых подстилается океанической корой, толщина осадочного слоя, обычно включающего турбидиты, может достигать 15-20 км. Второй слой (V p 4,5-5,5 км/с) в верхней части сложен базальтами (часто с подушечной отдельностью - пиллоу-базальтами) с редкими прослоями пелагических осадков; в нижней части слоя развит комплекс параллельных даек долеритов (общая мощность 1,2-2 км). Третий слой (V p 6-7,5 км/с) в верхней части состоит из массивных габбро, в нижней - из расслоенного комплекса, в котором габбро чередуются с ультраосновными породами (общая мощность 2-5 км). В пределах внутренних поднятий океанов земная кора утолщена до 25-30 км за счёт увеличения мощности второго и третьего слоёв. Древним аналогом океанической коры на континентах являются офиолиты.

Океаническая кора формируется на дивергентных границах литосферных плит (протягиваются вдоль осевых частей срединно-океанических хребтов), на которых происходит подъём к поверхности и застывание базальтовой магмы. Континентальная кора образуется в процессе переработки океанической коры на активных континентальных окраинах.

Кроме двух главных типов земной коры, выделяют переходные типы. Субокеаническая кора представляет собой утонённую в результате рифтогенеза до 15-20 км континентальную кору, пронизанную дайками и силлами основных магматических пород; развита вдоль континентальных склонов и подножий, а также подстилает глубоководные впадины некоторых задуговых бассейнов. Субконтинентальная кора (недостаточно консолидированная, мощность менее 25 км) наблюдается в вулканических островных дугах, где океаническая кора превращается в континентальную.

Земная кора испытывает горизонтальные и вертикальные тектонические движения. В ней расположены очаги землетрясений, формируются магматические очаги, породы локально или на больших площадях подвергаются метаморфизму. Тектонические движения земной коры и протекающие в ней эндогенные процессы обусловлены существованием в недрах Земли частично расплавленной астеносферы. Под действием тектонических движений и деформаций, магматической деятельности, метаморфизма, экзогенных процессов (перемещение ледников, оползни, карст, речная эрозия и др.) горные породы земной коры вовлекаются в складчатые и разрывные дислокации тектонические. Воздействие на породы земной коры атмо-, гидро- и биосферы приводит к их выветриванию.

Об эволюции земной коры на протяжении геологической истории смотри в статье Земля.

Лит.: Хаин В. Е., Ломизе М. Г. Геотектоника с основами геодинамики. 2-е изд. М., 2005; Хаин В. Е., Короновский Н. В. Планета Земля от ядра до ионосферы. М., 2007.

Земная кора - верхняя часть литосферы. В масштабах всего земного шара её можно сравнить с тончайшей плёнкой - столь незначительна её мощность. Но даже эту самую верхнюю оболочку планеты мы знаем не очень хорошо. Как же можно узнать о строении земной коры, если даже самые глубокие скважины, пробуренные в коре, не выходят за первый десяток километров? На, помощь учёным приходит сейсмолокация. Расшифровывая скорость прохождения сейсмических волн через разные среды, можно получить данные о плотности земных слоёв, сделать вывод об их составе. Под континентами и океаническими впадинами строение земной коры различно.

ОКЕАНИЧЕСКАЯ КОРА

Океаническая земная кора более тонкая (5-7 км), чем континентальная, и состоит из двух слоёв - нижнего базальтового и верхнего осадочного. Ниже базальтового слоя находится поверхность Мохо и верхняя мантия. Рельеф дна океанов очень сложен. Среди разнообразных форм рельефа особенно выделяются огромные срединно-океанические хребты. В этих местах происходит зарождение молодой базальтовой океанической коры из вещества мантии. Через глубинный разлом, проходящий вдоль вершин по центру хребта - рифт, магма выходит на поверхность, растекаясь в разные стороны в виде лавовых подводных потоков, постоянно раздвигая в разные стороны стенки рифтового ущелья. Этот процесс называется спредингом.

Срединно-океанические хребты возвышаются над дном океанов на несколько километров, а их протяженность достигает 80 тыс. км. Хребты рассекаются параллельными поперечными разломами. Их называют трансформными. Рифтовые зоны - самые неспокойные сейсмические зоны Земли. Базальтовый слой перекрывают толщи морских осадочных отложений - илов, глин разного состава.

КОНТИНЕНТАЛЬНАЯ КОРА

Континентальная земная кора занимает меньшую площадь (около 40% поверхности Земли - прим.), но имеет более сложное строение и гораздо большую мощность. Под высокими горами её толщина измеряется 60-70 километрами. Строение коры континентального типа трёхчленное - базальтовый, гранитный и осадочный слои. Гранитный слой выходит на поверхность на участках, именуемых щитами. Например, Балтийский щит, часть которого занимает Кольский полуостров, сложен породами гранитного состава. Именно здесь велось глубокое бурение, и Кольская сверхглубокая скважина достигла отметки 12 км. Но попытки пробурить весь гранитный слой насквозь оказались неудачными.

Шельф - подводная окраина материка - также имеет континентальную кору. То же относится и к крупным островам - Новой Зеландии, островам Калимантан, Сулавеси, Новая Гвинея, Гренландия, Сахалин, Мадагаскар и другим. Окраинные моря и внутренние моря, такие как Средиземное, Чёрное, Азовское, расположены на коре континентального типа.

Говорить о базальтовом и гранитном слоях континентальной коры можно лишь условно. Имеется в виду, что скорость прохождения сейсмических волн в этих слоях сходна со скоростью прохождения их в породах базальтового и гранитного состава. Граница гранитного и базальтового слоев выделяется не очень чётко и изменяется по глубине. Базальтовый слой граничит с поверхностью Мохо. Верхний осадочный слой меняет свою толщину в зависимости от рельефа поверхности. Так, в горных районах он тонкий или вообще отсутствует, так как внешние силы Земли перемещают рыхлый материал вниз по склонам - прим.. Зато в предгорьях, на равнинах, в котловинах и впадинах он достигает значительных мощностей. Например, в Прикаспийской низменности, которая испытывает погружение, осадочный слой достигает 22 км.

ИЗ ИСТОРИИ КОЛЬСКОЙ СВЕРХГЛУБОКОЙ СКВАЖИНЫ

С момента начала бурения этой скважины в 1970 году ученые ставили сугубо научную задачу этого эксперимента: определить границу между гранитным и базальтовым слоями. Место было выбрано с учетом того, что именно в районах щитов гранитный слой, не перекрытый осадочным, может быть пройден «насквозь», что позволило бы прикоснуться к породам базальтового слоя, увидеть разницу. Ранее предполагалось, что такая граница на Балтийском щите, где на поверхность выходят древние магматические породы, должна находиться на глубине примерно 7 км.

За несколько лет бурения скважина неоднократно отклонялась от заданного вертикального направления, пересекая пласты с разной прочностью. Иногда буры ломались, и тогда приходилось начинать бурение заново, обходными стволами. Материал, который доставлялся на поверхность, исследовался разными учеными и постоянно приносил удивительные открытия. Так, на глубине около 2 км были найдены медно-никелевые руды, а с глубины 7 км был доставлен керн (так называется образец породы из бура в виде длинного цилиндра - прим. от сайт), в котором были обнаружены окаменевшие остатки древних организмов.

Но, пройдя более 12 км к 1990 году, скважина так и не вышла за пределы гранитного слоя. В 1994 году бурение было остановлено. Кольская сверхглубокая - не единственная в мире скважина, которую закладывали для глубокого бурения. Подобные эксперименты велись в разных местах несколькими странами. Но только Кольская достигла таких отметок, за что была занесена в Книгу рекордов Гиннесса.

По современным представлениям геологии наша планета состоит из нескольких слоев - геосфер. Они различаются по физическим свойствам, химическому составу и В центре Земли находится ядро, за ним идет мантия, потом - земная кора, гидросфера и атмосфера.

В данной статье мы рассмотрим строение земной коры, являющейся верхней частью литосферы. Она представляет собой внешнюю твердую оболочку мощность которой так мала (1,5 %), что ее можно сравнить с тонкой пленкой в масштабах всей планеты. Однако, несмотря на это, именно верхний слой земной коры имеет для человечества большой интерес, как источник полезных ископаемых.

Кора земли условно разделяется на три слоя, каждый из которых по-своему примечателен.

  1. Верхний слой - осадочный. Он достигает толщины от 0 до 20 км. Осадочные породы образовываются вследствие отложения веществ на суше, либо их оседания на дне гидросферы. Они входят в состав земной коры, располагаясь в ней сменяющими друг друга пластами.
  2. Средний слой - гранитный. Его толщина может колебаться от 10 до 40 км. Это магматическая порода, образовавшая твердый слой в результате извержений и последующих застываний магмы в земной толще при высоком давлении и температуре.
  3. Нижний слой, входящий в строение земной коры - базальтовый, тоже имеет магматическое происхождение. В нем содержится большее количество кальция, железа и магния, и его масса больше, чем у гранитной породы.

Структура земной коры не везде одинакова. Особенно разительные отличия имеют океаническая кора и континентальная. Под океанами земная кора тоньше, а под материками толще. Наибольшую толщину она имеет в районах горных массивов.

В состав входят два слоя - осадочный и базальтовый. Под базальтовым слоем находится поверхность Мохо, а за ней верхняя мантия. Океаническое дно имеет сложнейшие рельефные формы. Среди всего их разнообразия особое место занимают огромных размеров срединно-океанические хребты, в которых из мантии зарождается молодая базальтовая океаническая кора. Магма имеет доступ на поверхность через глубинный разлом - рифт, который проходит по центру хребта вдоль вершин. Снаружи магма растекается, тем самым постоянно раздвигая стенки ущелья в стороны. Такой процесс получил название «спрединг».

Строение земной коры более сложное на континентах, нежели под океанами. Континентальная кора занимает гораздо меньшую площадь, чем океаническая - до 40% земной поверхности, но имеет намного большую мощность. Под она достигает толщины 60-70 км. Континентальная кора имеет трехслойное строение - осадочный слой, гранитный и базальтовый. На участках, которые называются щитами, гранитный слой находится на поверхности. Как пример - сложенный из гранитных пород.

Подводная крайняя часть материка - шельф, также имеет континентальное строение земной коры. К нему относятся и острова Калимантан, Новая Зеландия, Новая Гвинея, Сулавеси, Гренландия, Мадагаскар, Сахалин и др. А также внутренние и окраинные моря: Средиземное, Азовское, Черное.

Проводить границу между гранитным слоем и базальтовым можно лишь условно, так как они имеют сходную скорость прохождения сейсмических волн, по которой определяют плотность земных слоев и их состав. Базальтовый слой соприкасается с поверхностью Мохо. Осадочный слой может иметь разную толщину, что зависит от располагающейся на нем формы рельефа. В горах, например, он или вообще отсутствует или имеет очень малую толщину, ввиду того что рыхлые частицы перемещаются вниз по склонам под воздействием внешних сил. Но зато он очень мощен в предгорных районах, впадинах и котловинах. Так, в он достигает 22 км.

Характерная черта эволюции Земли — дифференциация вещества, выражением которой служит оболочечное строение нашей планеты. Литосфера, гидросфера, атмосфера, биосфера образуют основные оболочки Земли, отличающиеся химическим составом, мощностью и состоянием вещества.

Внутреннее строение Земли

Химический состав Земли (рис. 1) схож с составом других планет земной группы, например Венеры или Марса.

В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см 3 .

О внутреннем строении Земли достоверных данных весьма мало. Рассмотрим рис. 2. Он изображает внутреннее строение Земли. Земля состоит из земной коры, мантии и ядра.

Рис. 1. Химический состав Земли

Рис. 2. Внутреннее строение Земли

Ядро

Ядро (рис. 3) расположено в центре Земли, его радиус составляет около 3,5 тыс км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см 3 (сравните: вода — 1 г/см 3). Ядро предположительно состоит из сплавов железа и никеля.

Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.

Мантия

Мантия — геосфера Земли, которая окружает ядро и составляет 83 % от объема нашей планеты (см. рис. 3). Нижняя ееграница располагается на глубине 2900 км. Мантия разделяется на менее плотную и пластичную верхнюю часть (800-900 км), из которой образуется магма (в переводе с греческого означает «густая мазь»; это расплавленное вещество земных недр — смесь химических соединений и элементов, в том числе газов, в особом полужидком состоянии); и кристаллическую нижнюю, тол- шиной около 2000 км.

Рис. 3. Строение Земли: ядро, мантия и земная кора

Земная кора

Земная кора - внешняя оболочка литосферы (см. рис. 3). Ее плотность примерно в два раза меньше, чем средняя плотность Земли, — 3 г/см 3 .

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).

Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.

Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.

Состав и строение земной коры

По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры (см. рис. 5).

Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.

Рис. 4. Строение земной коры

Рис. 5. Состав земной коры

Минерал — это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.

Рис. 6. Общий минеральный состав Земли

Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.

Осадочные горные породы - глина, известняк, мел, песчаник и др. — образовались путем осаждения веществ в водной среде и на суше. Они лежат пластами. Геологи называют их страницами истории Земли, так как но ним можно узнать о природных условиях, существовавших на нашей планете в давние времена.

Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).

Органогенные горные породы образуются в результате накопления останков животных и растений.

Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).

Таблица 1. Обломочные горные породы в зависимости от размеров обломков

Название породы

Размер облом кон (частиц)

Более 50 см

5 мм — 1 см

1 мм — 5 мм

Песок и песчаники

0,005 мм — 1 мм

Менее 0,005 мм

Хемогенные горные породы формируются в результате осаждения из вод морей и озер растворенных в них веществ.

В толще земной коры из магмы образуются магматические горные породы (рис. 7), например гранит и базальт.

Осадочные и магматические породы при погружении на большие глубины под влиянием давления и высоких температур подвергаются значительным изменениям, превращаясь в метаморфические горные породы. Так, например, известняк превращается в мрамор, кварцевый песчаник — в кварцит.

В строении земной коры выделяют три слоя: осадочный, «гранитный», «базальтовый».

Осадочный слой (см. рис. 8) образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения. Например, каменный уголь -это продукт преобразования растений древних времен. Мощность осадочного слоя колеблется в широких пределах — от полного отсутствия в некоторых районах суши до 20-25 км в глубоких впадинах.

Рис. 7. Классификация горных пород по происхождению

«Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.

«Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.

Мощность и вертикальная структура земной коры различны. Выделяют несколько типов земной коры (рис. 8). Согласно наиболее простой классификации различают океаническую и материковую земную кору.

Континентальная и океаническая кора различны по толщине. Так, максимальная толщина земной коры наблюдается под горными системами. Она составляет около 70 км. Под равнинами мощность земной коры составляет 30-40 км, а под океанами она наиболее тонкая — всего 5-10 км.

Рис. 8. Типы земной коры: 1 — вода; 2- осадочный слой; 3 — переслаивание осадочных пород и базальтов; 4 — базальты и кристаллические ультраосновные породы; 5 — гранитно-метаморфический слой; 6 — гранулитово-базитовый слой; 7 — нормальная мантия; 8 — разуплотненная мантия

Различие континентальной и океанической земной коры по составу пород проявляется в том, что гранитный слой в океанической коре отсутствует. Да и базальтовый слой океанической коры весьма своеобразен. По составу пород он отличен от аналогичного слоя континентальной коры.

Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. Замещение континентальной коры океанической происходит в океане примерно на глубине 2450 м.

Рис. 9. Строение материковой и океанической земной коры

Выделяют и переходные типы земной коры — субокеаническую и субконтинентальную.

Субокеаническая кора расположена вдоль континентальных склонов и подножий, может встречаться в окраинных и средиземных морях. Она представляет собой континентальную кору мощностью до 15-20 км.

Субконтинентальная кора расположена, например, на вулканических островных дугах.

По материалам сейсмического зондирования - скорости прохождения сейсмических волн — мы получаем данные о глубинном строении земной коры. Так, Кольская сверхглубокая скважина, впервые позволившая увидеть образцы пород с глубины более 12 км, принесла много неожиданного. Предполагалось, что на глубине 7 км должен начаться «базальтовый» слой. В действительности же он обнаружен не был, а среди горных пород преобладали гнейсы.

Изменение температуры земной коры с глубиной. Приповерхностный слой земной коры имеет температуру, определяемую солнечным теплом. Это гелиометрический слой (от греч. гелио — Солнце), испытывающий сезонные колебания температуры. Средняя его мощность — около 30 м.

Ниже расположен еще более тонкий слой, характерной чертой которого является постоянная температура, соответствующая среднегодовой температуре места наблюдений. Глубина этого слоя увеличивается в условиях континентального климата.

Еще глубже в земной коре выделяется геотермический слой, температура которого определяется внутренним теплом Земли и с глубиной возрастает.

Увеличение температуры происходит главным образом за счет распада радиоактивных элементов, входящих в состав горных пород, прежде всего радия и урана.

Величину нарастания температуры горных пород с глубиной называют геотермическим градиентом. Он колеблется в довольно широких пределах — от 0,1 до 0,01 °С/м — и зависит от состава горных пород, условий их залегания и ряда других факторов. Под океанами температура с глубиной нарастает быстрее, чем на континентах. В среднем с каждыми 100 м глубины становится теплее на 3 °С.

Величина, обратная геотермическому градиенту, называется геотермической ступенью. Она измеряется в м/°С.

Тепло земной коры — важный энергетический источник.

Часть земной коры, простирающаяся ло глубин, доступных для геологического изучения, образует недра Земли. Недра Земли требуют особой охраны и разумного использования.

В строении земной коры участвуют все описанные типы горных пород - магматические, осадочные и метаморфические, залегающие выше границы Мохо. Как в пределах континентов, так и в пределах океанов выделяются подвижные пояса и относительно устойчивые площади земной коры. На континентах к устойчивым площадям относятся обширные равнинные пространства - платформы (Восточно-Европейская, Сибирская), в пределах которых располагаются наиболее устойчивые участки - щиты (Балтийский, Украинский), представляющие собой выходы древних кристаллических горных пород. К подвижным поясам относятся молодые горные сооружения, такие, как Альпы, Кавказ, Гималаи, Анды и другие (рисунок 3.1).

Рисунок 3.1. Обобщенный профиль дна океана (по О. К. Леонтьеву)

Материковые структуры не ограничиваются только континентами, в ряде случаев они протягиваются в океан, образуя так называемую подводную окраину материков, состоящую из шельфа, глубиной до 200 м, континентального склона с подножьем до глубин 2500 -3000 м. В пределах океанов также выделяются стабильные области - океанские платформы - значительные площади ложа океана - обширные абиссальные (греч. "абиссос" - бездна) равнины глубиной 4 -6 км, и подвижные пояса, к которым относятся срединно-океанские хребты и активные окраины Тихого океана с развитыми окраинными морями (Охотское, Японское и др.), островными дугами (Курильские, Японские и др.) и глубоководными желобами (глубиной 8-10 км и более).

На первых этапах геофизических исследований выделялись два основных типа земной коры: 1) континентальный и 2) океанский, резко отличающиеся друг от друга строением и мощностью слагающих пород. В последующем стали выделять два переходных типа: 1) субконтинентальный и 2) субокеанский (рисунок 3.2).


Условные обозначения:

1 - вода; 2 - осадочный слой; 3 - гранитный слой; 4 - базальтовый слой континентальной коры; 5 - базальтовый слой океанической коры; 6 - магматический слой океанической коры; 7 - вулканические острова; 8,9 - мантия (ультраосновные магматические породы).

Рисунок 3.2 - Схема строения различных типов земной коры

Континентальный тип земной коры

Континентальный тип земной коры. Мощность континентальной земной коры изменяется от 35-40 (45) км в пределах платформ до 55-70 (75) км в молодых горных сооружениях. Континентальная кора продолжается и в подводные окраины материков. В области шельфа ее мощность уменьшается до 20-25 км, а на материковом склоне (на глубине около 2,0-2,5 км) выклинивается. Континентальная кора состоит из трех слоев. Первый - самый верхний слой представлен осадочными горными породами, мощностью от 0 до 5 (10) км в пределах платформ, до 15-20 км в тектонических прогибах горных сооружений. Скорость продольных сейсмических волн (Vp) меньше 5 км/с. Второй - традиционно называемый "гранитный" слой на 50% сложен гранитами, на 40% - гнейсами и другими в разной степени метаморфизованными породами. Исходя из этих данных, его часто называют гранитогнейсовым или гранитометаморфическим. Его средняя мощность составляет 15-20 км (иногда в горных сооружениях до 20 - 25 км). Скорость сейсмических волн (Vp) - 5,5-6,0 (6,4) км/с. Третий, нижний слой называется "базальтовым". По среднему химическому составу и скорости сейсмических волн этот слой близок к базальтам.

Однако высказывается предположение, что он сложен основными интрузивными породами типа габбро, а также метаморфическими породами амфиболитовой и гранулитовой фаций метаморфизма, не исключается наличие и ультраосновных пород. Правильнее называть этот слой гранулито-базитовым (базит - основная порода). Его мощность изменяется от 15-20 до 35 км. Скорость распространения волн (Vp) 6,5-6,7 (7,4) км/с. Граница между гранитометаморфическим и гранулито-базитовым слоями получила название сейсмического раздела Конрада. Долгое время господствовало представление о том, что граница Конрада существует в континентальной коре повсеместно. Однако последующие данные глубинного сейсмозондирования показали, что поверхность Конрада далеко не всюду выражена, а фиксируется лишь в отдельных местах. Естественно возникают новые интерпретации строения континентальной земной коры. Так, Н. И. Павленковой и другими предложена четырехслойная модель (рис. 3.3). В этой модели выделяется верхний осадочный слой с четкой скоростной границей, обозначенной Ко. Ниже расположенные части земной коры объединены в понятие кристаллический фундамент, или консолидированная кора, внутри которой выделяются три слоя: верхний, промежуточный и нижний, разделенные границами К1 и К2. Отмечается достаточная устойчивость границы К2 - между промежуточным и нижним этажами. Верхний этаж характеризуется вертикально-слоистой структурой и дифференцированностью отдельных блоков по составу и физическим параметрам. Для промежуточного этажа отмечается тонкая горизонтальная расслоенность и наличие отдельных пластин с пониженной скоростью сейсмических волн (Vp) - 6 км/с (при общей скорости в слое 6,4-6,7 км/с) и аномальной плотностью.

На основании этого делается вывод, что промежуточный слой может быть отнесен к ослабленному слою, по которому возможны горизонтальные подвижки вещества. В настоящее время и другие исследователи обращают внимание на наличие отдельных линз в континентальной коре с относительно (на 0,1-0,2 км/с) пониженными скоростями сейсмических волн на глубинах 10-20 км, при мощности линз 5-10 км. Предполагают, что эти зоны (или линзы) связаны с сильной трещиноватостью и обводненностью пород.

Данные С. Р. Тейлора указывают также, что в пределах континентальной коры нет единого слоя с пониженной скоростью, а отмечается прерывистая расслоенность. Все сказанное свидетельствует о большой сложности континентальной земной коры и неоднозначности его интерпретации. Достаточно убедительным доказательством этого являются данные, полученные при бурении сверхглубокой Кольской скважины, достигшей уже глубины свыше 12 км. По предварительным сейсмическим данным, в районе заложения скважины граница между "гранитным" и "базальтовым" слоями должна бы быть встречена на глубине около 7 км. В действительности никакого геофизического "базальтового" слоя не оказалось. На этой глубине под мощной метаморфизованной вулканогенно-осадочной толщей протерозойского возраста были вскрыты плагиоклазовые гнейсы, гранито-гнейсы, амфиболиты - породы среднетемпературной стадии метаморфизма, процентное содержание которых увеличивается с глубиной. Что же послужило причиной изменения скорости сейсмических волн (от 6,1 до 6,5-6,6 км/с) на глубине около 7 км, где предполагалось наличие геофизического "базальтового" слоя? Возможно, что это связано с амфиболитами и их ролью в изменении упругих свойств пород. Возможно также, что указанная ранее (до бурения скважины) граница связана не с изменением состава пород, а с увеличением поля напряжения, обусловленного интенсивными деформациями и неоднократными проявлениями метаморфизма.

Статьи по теме: