Влияние тяжелых металлов на качество блюд. Продукты, которые убирают из организма тяжелые металлы. Как тяжелые металлы попадают в продукты

Изотопы тяжелых металлов оседают на внутренних органах, что может стать причиной многих заболеваний (в частности, сердечно-сосудистых, недугов нервной системы, почек, рака, острого и хронического отравления). Как натуральным образом удалить тяжелые металлы из организма? Просто нужно правильно составить рацион. Вот продукты, которые обязательно должны быть приняты во внимание, если стоит такая задача.

Продукты, содержащие пектин

Пектины абсорбируют на поверхности соли тяжелых металлов. Они находятся в овощах, фруктах, ягодах. Помимо прочего, свекла дополнительно содержит флавоноиды, которые заменяют тяжелые металлы инертными соединениями. А картофель в мундире, содержащий крахмал, поглощает токсины из организма, удаляя их из организма естественным путем. Тяжелые металлы из нашего тела также убирают морковь, тыква, баклажаны, редис и помидоры.

Яблоки, цитрусовые, айва, груши, виноград, абрикосы – эти растительные продукты могут помочь устранению токсичных веществ из организма. Ягоды рябины, клюквы, малины, голубики связывают тяжелые металлы в не растворимые в воде и жире соединения, что облегчает их выведение из организма. Употребление сырых фруктов помогает очистить организм от накопившихся шлаков, но можно использовать их и в виде мармелада домашнего приготовления (только не очень сладкого).

Чай из ромашки, календулы, облепихи, шиповника

Это растения, которые помогают защищать клетки от проникновения тяжелых металлов и способствуют их выведению. Масла шиповника и облепихи очень полезны в случае отравления такими субстанциями.

Щавель, шпинат, салат

Зеленые листовые овощи помогают избавиться от радиоактивных изотопов цезия (этот элемент накапливается, в первую очередь, в мышцах и костях).

Можжевельник, семена кунжута и лопух, корень лимонной травы

Такие растения содержат активные вещества, которые нейтрализуют радионуклиды. При постоянном воздействии изотопов радиоактивных металлов рекомендуют также принимать до 40 капель настойки из аралии, родиолы розовой, женьшеня.

Кориандр

Употребление чая, настоянного на кориандре посевном, удаляет из организма ртуть в течение 2 месяцев. Достаточно каждый день 4 столовые ложки измельченного кориандра заваривать в литре кипящей воды (сосуд должен быть не металлическим) и выпивать настой через 20 минут.

Рис

Проведение очищающих процедур на базе риса особенно рекомендуется людям, работающим во вредных условиях. Столовую ложку крупы нужно вечером замочить в воде, а утром сварить без соли и съесть. Таким образом приготовленный рис удаляет из организма токсические соли металлов.

Овес

Отвар овса тоже защищает тело от воздействия солей тяжелых металлов. Можно просто залить стакан зерна 2 литрами воды и варить на маленьком огне в течение 40 минут. Таким образом приготовленный напиток следует пить по полстакана 4 раза в день. Благодаря этому организм очистится натуральным путем, в том числе от кадмия, который присутствует в табачном дыме.

Профилактика

Организм способен без сторонней помощи удалять накопившиеся токсины и отложения. Тем не менее, работа и жизнь в условиях, вредных для здоровья, или нездоровый образ жизни влияют на накопление токсичных веществ, которые вызывают разные заболевания. Поэтому следует заботиться о профилактике — быть осторожными с качеством и происхождением потребляемой пищи, а в случае необходимости обращаться к врачам с просьбой назначить лекарства, которые помогут очистить организм от тяжелых металлов.

Металлы. Металлы находятся в продуктах питания, консервах и посуде (алюминий, олово, медь) и являются причиной различных расстройств. Восемь химических элементов (ртуть, кадмий, свинец, мышьяк, медь, стронций, цинк, железо) объединенный комитет экспертов ФАО/ВОЗ по Codex Alimentarms включил в число компонентов, содержание которых контролируется при международной торговле продуктами питания.

Рассмотрим основные из них.

Ртуть. Ртуть - это металл, занимающий особое место в истории цивилизации. Добыча золота и величайшие технические достижения в электронике и ядерной технике были бы невозможны без применения этого замечательного металла. В последние десятилетия становится все более очевидным, что ртутная интоксикация значима не только для персонала, работающего в производственных условиях, но и для большинства городского населения. Не случайно, что хронические отравления парами ртути в конце XX в., по мнению медиков, перешли из разряда профессиональных заболеваний в болезнь популяции. Несмотря на огромные усилия, предпринимаемые для замены ртутьсодержащих изделий на более безопасные, полностью избавиться от ее применения человечеству вряд ли удастся. Поэтому у нас нет другой альтернативы, как научиться держать ртуть под контролем и знать, где может подстерегать «ртутная опасность».

Ртуть - рассеянный элемент. В атмосферу поступает как в ходе природных процессов (испарение со всей поверхности суши; возгонка ртути из соединений, находящихся на большой глубине в толще земной коры; вулканическая деятельность), так и за счет антропогенной деятельности (пи- рометаллургическое получение металла и все процессы, в которых используется ртуть; сжигание любого органического топлива; цветная металлургия; термические процессы с нерудными материалами и т.п.).

Техногенно рассеиваемая ртуть (пары, водорастворимые соли, органические соединения) отличается геохимической подвижностью по сравнению с природными (преимущественно сульфидными, труднорастворимыми, малолетучими) соединениями ртути и поэтому более опасна в экологическом отношен™.

Поступившие в атмосферу пары ртути сорбируются аэрозолями, почвой, вымываются атмосферными осадками, включаясь в круговорот в почве и воде (ионизируются, превращаются в соли, подвергаются метилированию, усваиваются растениями и животными). В процессе аэрогенной, водной, почвенной и пищевой миграции Hg° превращается в Hg2+.

Метилирование неорганической ртути в донных отложениях озер, рек и других водотоков, а также океанов - ключевой этап процесса миграции ртути по пищевым цепям водных экосистем. Были выделены почвенные микроорганизмы, способные метилировать ртуть.

Метилирование ртути микроорганизмами подчиняется следующим закономерностям:

  • преобладающий продукт биологического метилирования ртути при pH, близком к нейтральному, - метилртуть;
  • скорость метилирования при окислительных условиях выше, чем при анаэробных;
  • количество образуемой метилртути удваивается при десятикратном увеличении содержания неорганической ртути;
  • повышенная скорость роста микроорганизмов увеличивает метилирование ртути.

Ртуть относится к числу микроэлементов, постоянно присутствующих в теле человека, но не является эссенци- альным микроэлементом.

Ртуть отличается высокой токсичностью для любых форм жизни.

Токсическое действие ртути зависит от вида соединения: алкилртутные соединения токсичнее неорганических. Наиболее токсичны алкилртутные соединения с короткой цепью - метилртуть, этилртуть. Они больше накапливаются в организме, лучше растворяются в липидах, легче проникают через биологические мембраны. Чувствительность нервной системы к метил- и этилртути выше, чем к другим соединениям.

В организм человека ртуть может попадать с продуктами питания растительного и животного происхождения, продуктами моря, атмосферным воздухом и водой. В производственных условиях основное значение имеет поступление ртути в организм через дыхательные пути в виде паров или пыли. Пары ртути полностью задерживаются в дыхательных путях, если концентрация их в воздухе не превышает 0,25 мг/м3.

Резорбция ртути в пищеварительном тракте зависит от типа соединения: резорбция неорганических соединений составляет 2-15%, фенилртути - 50-80, метилртути - 90- 95%. Метилртуть стабильна в организме, другие алкилртут- ные соединения быстрее трасформируются в неорганические.

При всех путях поступления ртуть накапливается преимущественно в почках, селезенке и печени. Органические соединения, хорошо связываясь с белками, легко проникают через гематоэнцефалический и плацентарный барьеры и накапливаются в головном мозге, в том числе и плода, где их концентрация в 1,5-2 раза больше, чем у матери. В мозговой ткани метилртути содержится в 5-6 раз больше, чем в крови.

Поступление ртути в организм отрицательно влияет на обмен пищевых веществ: неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция, меди, цинка, селена; органические соединения - обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена.

Выведение ртути из организма осуществляется всеми железами желудочно-кишечного тракта, почками, потовыми и молочными железами, легкими. В грудном молоке обычно содержится около 5% от ее концентрации в крови. Неорганические соединения выделяются преимущественно с мочой (период полувыведения из организма - 40 сут), а органические соединения на 90% выделяются с желчью и калом (период полувыведения из организма - 76 сут). Из организма новорожденных ртуть выделяется медленнее, чем у взрослых. Она выводится из организма неравномерно. По мере выделения ртуть мобилизуется из депо. По-видимому, различные стрессовые ситуации стимулируют мобилизацию ртути, с чем связывают периодические обострения при хроническом меркуриализме.

Ртуть накапливается преимущественно в ядре клетки, остальные субклеточные структуры по содержанию ртути располагаются в следующем порядке: микросомы, цитоплазма, митохондрии. Повреждающее действие ртути распространяется на все субклеточные структуры. В основе механизма действия ртути лежит блокада биологически активных групп белковой молекулы (сульфгидрильных, аминных, карбоксильных и др.) и низкомолекулярных соединений с образованием обратимых комплексов, характеризующихся нуклеофильными лигандами. Установлено включение ртути (Hg2+) в молекулу транспортной РНК, играющей центральную роль в биосинтезе белков.

В начальные сроки воздействия малых концентраций ртути имеет место значительный выброс гормонов надпочечников и активирование их синтеза. Наблюдается возрастание моноаминооксидазной активности митохондриальной фракции печени. Установлено стимулирующее действие неорганических соединений ртути на развитие атеросклероза, но эта связь нерезко выражена.

Пары ртути проявляют нейротоксичность, от чего особенно страдают высшие отделы нервной системы. Вначале возбудимость коры больших полушарий повышается, затем возникает инертность корковых процессов. В дальнейшем развивается запредельное торможение.

Неорганические соединения ртути обладают нефроток- сичностью. Есть сведения о гонадотоксическом, эмбриоток- сическом и тератогенном действии соединений ртути.

Основные проявления хронического воздействия малых концентраций ртути следующие: повышенная нервозность, ослабление памяти, депрессивное состояние, парестезии на конечностях, мышечная слабость, эмоциональная лабильность, нарушение координации движений, симптомы поражения почек. К данной симптоматике могут присоединяться признаки поражения сердечно-сосудистой системы - аномальное повышение артериального давления, тахикардия, изменение электрической активности (ЭКГ). Все эти явления обусловлены воздействием ртути на энзиматическую активность в клетках, увеличением концентрации внутриклеточного кальция, ингибированием синтеза ДНК и РНК, нарушением цитоархитектоники микротрубочек, блокированием нейрорецепторов, ПОЛ в мембранах клеток мозга.

Болезнь Минамата - ртутная интоксикация алиментарного происхождения, обусловленная употреблением в пищу рыбы и других гидробионтов, выловленных из водоемов, загрязненн ых ртутью (Япония) (см. гл. 9).

Во многих странах мира отмечена сходная клиническая картина алиментарных ртутных интоксикаций, обусловленных употреблением протравленного ртутьорганическими соединениями посевного зерна, хлебобулочных изделий из него, а также мяса скота, получавшего это зерно с кормом. Латентный период данных заболеваний в зависимости от суточной дозы метилртути, поступившей в организм человека, составлял от 1-2 дней до нескольких недель.

Есть сообщения о защитном воздействии цинка и селена при поступлении в организм ртути. Защитное действие селена (в том числе содержащегося в рыбных продуктах, например в тунце) усматривают в деметилировании ртути с образованием нетоксичного селенортутного комплекса. Токсичность неорганических соединений ртути снижают аскорбиновая кислота и медь при их повышенном поступлении в организм, а органических соединений - протеины, цистеин, токоферолы. Пиридоксин, особенно при избыточном введении в организм, усиливает токсичность ртути.

При изучении болезни Минамата установлено, что под- пороговая суточная доза метилртути (по ртути) равняется 4 мкг/кг массы тела, т.е. около 0,3 мг для взрослого человека. Комитет экспертов ФАО/ВОЗ по пищевым добавкам, основываясь на расчетах с применением коэффициента безопасности 10, пришел к выводу, что поступление ртути в организм взрослого человека не должно превышать 0,3 мг в неделю и 0,05 мг в сутки, из которых не более 0,03 мг может составлять метилртуть. По данным ВОЗ, признаки интоксикации метилртутью у наиболее чувствительных к ней людей появляются тогда, когда концентрация ртути в крови превышает 150 мкг/л. Максимально безопасным для взрослого человека уровнем ртути в крови считается 100 мкг/л. Фоновое содержание ртути в волосах - 10-20 мкг/г, безопасным уровнем ртути в волосах считают 30-40 мкг/г. Содержание ртути в моче больше 10 мкг/сут свидетельствует о возможной опасности хронического отравления, а 50 мкг/сут, при наличии соответствующей симптоматики, служит подтверждением диагноза микромеркуриализма.

Медь. Медь - микроэлемент, широко распространенный в природе. Средние концентрации меди в воде рек и озер составляют 7 мкг/л, в океанах - 0,9 мкг/л. Важная роль в процессе миграции меди в гидросфере принадлежит гидро- бионтам; некоторые виды планктона концентрируют медь в 90 тыс. раз выше. Содержание меди в почвах составляет в среднем 15-20 мг/кг.

Биологическая роль меди - она входит в состав гематокупреина и других порфиринов животного мира, металло- ферментов, например цитохромоксидазы, лизилоксидазы. Последняя осуществляет формирование поперечных сшивок между полипептидными цепями коллагена и эластина. Недостаток меди приводит к образованию дефектного коллагена, что увеличивает вероятность разрыва стенок артерий. Дефицит меди может привести к анемии, незначительному замедлению физического развития детей, увеличению частоты сердечно-сосудистых заболеваний.

Суточная потребность взрослого человека в меди - 2-2,5 мг, т.е. 35-40 мкг/кг массы тела; при напряженной мышечной деятельности поступление меди не может быть ниже 4-5 мг, для детей - 80 мкг/кг.

В обычных условиях человек получает в сутки в среднем 2-5 мг меди, главным образом с пищей. Поступление через легкие незначительно.

При поступлении с пищей в кишечнике всасывается около 30% содержащейся меди. При повышенном поступлении меди в организм резорбция ее снижается, что уменьшает опасность интоксикации. Медь малотоксична. В зависимости от ее соединений ЛД50 для теплокровных животных варьирует от 140 до 200 мг/кг массы тела. У человека однократная доза 10-20 мг/кг массы тела вызывает тошноту, рвоту и другие симптомы интоксикации. Известны случаи, когда приготовление или подогревание кофе или чая в медной посуде вызывало у людей желудочно-кишечные расстройства.

Медь в количестве 5-15 мг/кг может придать металлический привкус воде, напиткам, пище. Повышенное содержание меди может обусловить уменьшение срока хранения пищевых жиров и жиросодержащих продуктов (они прогоркают, изменяют цвет). Медь катализирует окисление не только ненасыщенных жиров, но и аскорбиновой кислоты, она снижает ее количество в овощах, фруктах и соответствующих соках.

Механизм токсического действия меди связан с блокадой сульфгидрильных групп белков, в том числе ферментов.

Высокая гепатотоксичность меди и ее соединений связана с ее локализацией в лизосомах гепатоцитов и со способностью повышать проницаемость мембраны митохондрий. Интоксикации соединениями меди могут сопутствовать аутоиммунные реакции и нарушение метаболизма моноаминов. Острая интоксикация сопровождается выраженным гемолизом эритроцитов. При хронической интоксикации медью и ее солями возможны функциональные расстройства нервной системы (обнаружено сродство меди к симпатической нервной системе), печени и почек, изъязвление и перфорация носовой перегородки.

Эксперты ФАО пришли к выводу, что суточное потребление меди может составлять не более 0,5 мг/кг массы тела (до 30 мг в рационе) при нормальном содержании в пище молибдена и цинка - физиологических антагонистов меди.

Стронций. По химическим свойствам стронций сходен с кальцием и барием. По интенсивности поглощения стоит на четвертом месте после меди, цинка и бария.

Среднее содержание стронция в почвах - 0,035%. Нормой для растений считают концентрацию стронция в почве около 600 мг/кг, избыточное содержание - от 600 до 1000 мг/кг. При таких условиях становится реальной опасность возникновения уровской болезни. Наиболее богаты стронцием семейства зонтичных (0,044%), Виноградовых (0,037%); меньше всего его в злаковых (0,011%) и пасленовых (0,009%).

Стронций применяется в металлургии, в электровакуумной технике, как сплав со свинцом и оловом - в производстве аккумуляторов. Гидроксид стронция употребляют для изготовления стронциевых смазок, для выделения сахара из патоки; хлорид стронция - в холодильной промышленности, косметике и медицине; карбонат стронция входит в состав глазурей, стойких к атмосферным воздействиям.

Стронций содержится во всех тканях и органах человека, входит в состав скелета высших и низших животных. Стронций оказывает влияние на процессы костеобразования, активность ряда ферментов - каталазы, карбоангидразы, щелочной фосфатазы. На изолированные органы стронций действует как кальций, полностью заменяя его. Ионы Sr2+ настолько близки по характеристикам к Са2+, что включаются в обмен вместе с ним, но, обладая большей скоростью обмена и значительно отличаясь по размеру, они постепенно нарушают нормальную кальцификацию скелета.

Наиболее характерное проявление токсического действия стронция - уровская болезнь, клинические признаки которой - повышенная ломкость и уродливость костей. Предполагают, что рахитогенное действие стронция связано с блокированием биосинтеза одного из важных метаболитов витамина D и избыточным отложением фосфора в костях. Имеются указания на зобогенный эффект стронция, его действие как нервного и мышечного яда, способность хлорида стронция стимулировать продукцию тромбоксана В(2) тромбоцитами человека и оказывать местно-анестезирующее действие.

Цинк. Цинк относится к группе рассеянных элементов. Цинк - один из наиболее распространенных токсических компонентов крупномасштабного загрязнения Мирового океана, в настоящее время его содержание в поверхностном слое морской воды достигает 10-20 мкг/л. Среднее содержание цинка в почвах мира - 5-10~3%.

Цинк - компонент сплавов с цветными металлами (латунь, нейзильбер); применяется для защиты стальных и железных изделий от коррозии; служит в качестве наполнителя для резин; используется в производстве стекла, керамики, спичек, целлулоида, косметических средств. Соединения цинка служат пигментами для красок, компонентами для зубных цементов.

Антропогенными источниками поступления цинка в окружающую среду являются: выброс его в атмосферу при высокотемпературных технологических процессах (основной источник); шламы сточных вод и сами сточные воды химического, деревообрабатывающего, текстильного, бумажного, цементного производств, а также рудников, горно- обогатительных и плавильных заводов, металлургических комбинатов. Источник поступления цинка в воду - вымывание его горячей водой из оцинкованных водопроводных труб до 1,2-2,9 мг с поверхности 1 дм2 в сутки.

Содержание цинка в теле взрослого человека составляет 1-2,5 г, 30% депонируется в костях, 60% - в мышцах. Цинк всасывается в двенадцатиперстной кишке и верхнем отделе тонкой кишки. В печени часть цинка депонируется, часть трансформируется в меташюбелковые комплексы, в частности металлоэнзимы. Транспортируется цинк кровью в виде комплексов с белками, лишь незначительное количество содержится в ионной форме. Содержание цинка в цельной крови - 700-800 мкг%; из этого количества 75-85% находится в эритроцитах. С возрастом человека содержание цинка в теле нарастает. Выводится в основном через кишечник (10 мг/сут), с мочой (0,3-0,6 мг/сут), потом (в жаркую погоду до 2-3 мг/сут); может выводиться также с молоком.

В основе многих проявлений цинковой интоксикации лежат конкурентные отношения цинка с рядом металлов.

Избыточное поступление цинка в организм животных сопровождалось снижением уровня кальция в крови и в костях, одновременно нарушалось усвоение фосфора, в результате развивался остеопороз.

Цинк обладает кумулятивным токсическим эффектом даже при незначительном его содержании в воздухе, может представлять мутагенную и онкогенную опасность. Среди шведских горняков, добывающих цинк, наблюдается повышенная смертность от рака. Гонадотоксическое действие цинка проявляется снижением подвижности сперматозоидов и их способности проникать в яйцеклетку.

Железо. Железо - один из наиболее распространенных элементов земной коры (4,65% по массе); присутствует также в природных водах, где среднее содержание его колеблется в интервале 0,01-26,0 мг/л. Важный фактор миграции и перераспределения железа - биомасса Земли. Многие составные части пищевой цепи интенсивно накапливают железо. Активно аккумулирует его водная флора, причем интенсивность накопления зависит от времени года (концентрация возрастает к сентябрю). Интенсивная деятельность железобактерий приводит к тому, что железо в водоемах не рассеивается, а быстро окисляется и концентрируется в донных отложениях. Животные организмы аккумулируют железо в меньших количествах, чем растения.

Антропогенные источники поступления железа в окружающую среду: локальная техногенная аномалия - зона металлургических комбинатов, в твердых выбросах которых железо содержится в количестве от 22 ООО до 31 ООО мг/кг, что сопровождается избыточным его поступлением в почву и растения. Большую опасность представляют сточные воды и шламы металлургического, химического, машиностроительного, нефтехимического, химико-фармацевтического, лакокрасочного, текстильного производств.

В организме здорового взрослого человека содержится 4-5 г железа, ежедневные его потери составляют 0,5-1,3 мг. Суточная потребность в железе взрослого человека - 11-30 мг. Она значительно возрастает при беременности, кормлении грудью, при интенсивной мышечной деятельности. В основных пищевых продуктах содержится следующее количество железа (мкг/100 мг съедобной части): хлеб- 4000, мясо - 3000, рыба - 1000, картофель - 900, овощи - 700, фрукты - 600, молоко - 70; в среднем суточный рацион - около 28 мг.

Метаболизм железа определяется двумя принципиальными моментами: процессом всасывания железа и запасом железа в организме.

Всосавшееся в желудочно-кишечном тракте восстановленное железо транспортируется кровью в виде ферритина, где оно связано с Р,-глобулиновой фракцией белков.

Основная масса металла выводится с калом, меньше - с мочой и потом, у кормящих матерей может выводиться с молоком.

Развитие дефицита железа в организме связано с дисбалансом других микроэлементов:

  • недостаток фтора приводит к снижению утилизации железа и меди;
  • у жителей высокогорных районов увеличенный метаболизм железа сопровождается значительным накоплением магния в эритроцитах;
  • дефицит цинка приводит к развитию тяжелого симпто- мокомплекса железодефицитной анемии с гепатомегалией, карликовостью, половым недоразвитием и нарушением волосяного покрова (болезнь Прасада);
  • важное значение в возникновении железодефицитных состояний имеет недостаток меди, марганца, кобальта.

Источником избыточного поступления железа в организм человека могут стать пищевые продукты, длительно хранящиеся в луженых молочных флягах. Есть данные об отсутствии железодефицитных анемий у женщин, использующих для приготовления пищи железную посуду. В то же время у племени банту в связи с высоким содержанием железа в пищевом рационе отмечены сидероз печени и селезенки и связанные с ними случаи остеопороза.

Соединения Fe2+ обладают общим токсическим действием: у крыс, кроликов при поступлении в желудок наблюдались параличи, смерть в судорогах (причем хлориды токсичнее сульфатов). Fe2+ активно участвует в реакциях с радикалами гидроперекисей липидов:

  • небольшое содержание Fe2+ инициирует ПОЛ в митохондриях;
  • возрастание содержания Fe2+ приводит к разрушению гидроперекисей липидов.

Соединения Fe3+ менее ядовиты, но действуют прижига- юще на пищеварительный тракт и вызывают рвоту.

Железо обладает сенсибилизирующим эффектом по клеточно-опосредованному типу, не вызывает реакций немедленного типа. Соединения железа избирательно действуют на различные звенья иммунной системы: стимулируют Т-системы и снижают показатели состояния неспецифической резистентности и общего пула иммуноглобулинов.

Высокое потребление с пищей железа предрасполагает к сердечно-сосудистым заболеваниям. Существует точка зрения, что циклические менструации, связанные с кровопоте- рей, влекут за собой потерю железа, что резко снижает риск сердечно-сосудистой патологии у женщин в предклимакте- рическом периоде. В начале менопаузы уровни запасенного железа быстро возрастают, и вероятность сердечно-сосудистых заболеваний возрастает.

Долгое время бытовало мнение о необходимости обогащения продуктов питания железом с целью борьбы с железодефицитными состояниями. Однако в последние годы появились сомнения в отношении этого из-за того, что железо может быть причиной ряда заболеваний.

Железо более опасно при воздействии per os, по сравнению с его действием на кожу. Аллергенная активность содержащих железо вод возрастает с увеличением температуры воды с 20 до 38 °С. При накожном воздействии сенсибилизирующий эффект наиболее выражен у Fe3+. Концентрация железа в воде на уровне 2,0-5,0 мг/л близка к порогу аллергенного действия на человека.

Алюминий. Этот металл широко применяется в машино- и самолетостроении, для приготовления упаковочных материалов, в медицине как антоцид при лечении гастритов, язв и др. Широко распространен в окружающей среде. Для организма - чужеродный элемент, так как в выполнении каких-либо биологических функций у млекопитающих не участвует.

Уже указывалось в гл. 8, что алюминий содержится в повышенных количествах в некоторых растениях и получает большую растворимость и подвижность в кислых почвах, т.е. при выпадении кислотных осадков.

Среднее потребление алюминия человеком составляет 30-50 мг в день. Это количество складывается из содержания его в продуктах питания, питьевой воде и лекарственных препаратах. Четверть от этого количества приходится на воду.

Основные источники алюминия - алюминиевая посуда и упаковочный материал, имеющий покрытие из алюминиевой фольги. Кислые консервированные продукты питания и напитки (маринованные огурцы, кока-кола) могут содержать сами по себе небольшие количества алюминия. Он поступает также с некоторыми продуктами питания, например с морковью, которая может содержать до 400 мг/кг этого металла. Другим источником алюминия является чайный лист. Эпидемиологические исследования, проведенные канадским Министерством здравоохранения и социального обеспечения в 1993 г., показали, что пациенты с болезнью Альцгеймера в среднем употребляли чай в 2,5 раза чаще других людей. Некоторые традиционные, часто употребляемые лекарственные соединения (антациды, забуференный аспирин) также содержат в своем составе алюминий.

Известно, что алюминий резорбируется в относительно небольших количествах в ЖКТ - около 1%. После резорбции комплексируется преимущественно с трансферрином и распределяется по организму: в легких может накапливаться до 50 мг/кг, в мышцах и костях - около 10 мг/кг, в мозгу - около 2 мг/кг и в сыворотке крови - около 10 мкг/л. Удаляется из организма почти исключительно через почки.

Установлено, что алюминий способен замедлять образование костной ткани, что в дальнейшем может сопровождаться ее резорбцией. Кроме того, этот трехвалентный металл тормозит в ЖКТ всасывание фтора, кальция, железа и неорганического фосфата. Алюминий способен влиять на моторику ЖКТ путем торможения индуцированного аце- тилхолином сокращения гладких мышц кишечной стенки. Эти явления отмечаются часто у пациентов, принимающих алюминийсодержащие антацидные препараты.

С накоплением в организме алюминия связывают возникновение болезни Альцгеймера - медленно прогрессирующего дегенеративного, неврологического заболевания. Накопление в тканях мозга алюминия сопровождается быстро- протекающими дегенеративными изменениями в подкорковых ганглиях, вторичной гидроцефалией, деструкцией гиппокампа, ядер переднего мозга. Биохимически для болезни Альцгеймера характерно угнетение холинэргических нейротрансмиттеров, в частности ацетилхолинэстеразы и других энзимов, обеспечивающих холинэргические механизмы.

При данном заболевании алюминий связывается и с ядерным хроматином, в частности с ДНК, что ведет к глубокому нарушению механизмов транскрипции в нейронах.

Алюминий способен концентрироваться в ядрах нейронов, в их цитоплазме формируются характерные для болезни Альцгеймера парные спиралевидные нейрофиламенты, обнаруживаемые при электронной микроскопии. Нейро- фибриллярный аппарат пораженных нейронов подвергается тяжелым необратимым изменениям, что в свою очередь влечет за собой глубокие нарушения аксонального транспорта, определенную дисгармонию рецепторной активности и характерную дегенерацию дендритов. И хотя довольно точно доказано отложение алюминия в ЦНС, трактовка болезни Альцгеймера только как злокачественной формы ней- роалюминоза неоднозначна, так как в патогенезе этого заболевания принимают участие и другие факторы (иммуно- цитохимические, генетические).

  • Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Творческий проект на тему:

    « Содержание тяжелых металлов в продуктах питания ».

    Подготовили студенты

    сельскохозяйственного факультета

    Группы ТС-21 Стягова Е.Ю.,

    Менркулов В.Ю., Журавлева Д., Головацкая В.

    Введение

    2.2 Свинец

    2.3 Камдий

    6. Проведение опыта

    Заключение

    Список литературы

    Введение

    В настоящее время все чаще применяется термин токсичные элементы (тяжелые металлы более неудачное название, поэтому употребляется реже). Под этим термином в пищевой отрасли подразумевают ряд химических элементов, которые присутствуют в пищевых продуктах и оказывают неблагоприятное воздействие на здоровье человека. Прежде всего, это такие элементы, как свинец, ртуть, кадмий и мышьяк. Они обладают высокой токсичностью, способностью накапливаться в организме при длительном поступлении с пищевыми продуктами и обусловливать отдаленные последствия - мутагенные и канцерогенные (для мышьяка и свинца). Для наиболее актуальных токсичных элементов установлены жесткие гигиенические нормативы, выполнение которых стараются отслеживать на этапе сырья. Наибольшие проблемы по содержанию токсичных элементов в продовольственном сырье наблюдаются в районах геохимических аномалий, где концентрация токсичных элементов в объектах природной среды значительно выше, чем в других районах. Степень накопления тяжелых металлов в сельскохозяйственной продукции неравномерна. На нее влияют: уровень загрязненности почвы и других объектов природной среды; биологические особенности растений (например, особой способностью аккумулировать кадмий из почвы обладают листовые овощи, свекла и морковь); нерациональное применение минеральных удобрений, пестицидов; геологическая и агрохимическая характеристика почв.

    Цели и задачи проекта.

    1. Ознакомиться с термином «Тяжелые металлы»

    2. Определить содержание ТМ в пищевых продуктах.

    3. Пополнить знания о ТМ.

    4. Выяснить их влияние на растительные и животные организмы.

    5. Провести анализ содержания ТМ в отдельных продуктах.

    6. Подвести вывод о проделанной работе.

    1. Тяжелые металлы: характеристика

    тяжелый металл загрязнение растение

    Тяжёлые металлы - это элементы периодической системы химических элементов Д.И. Менделеева, с относительной молекулярной массой больше 40. К тяжелым металлам относятся более 40 химических элементов периодической системы Д.И. Менделеева, масса атомов которых составляет свыше 50 атомных единиц. Эта группа элементов активно участвует в биологических процессах, входя в состав многих ферментов. Группа "тяжелых металлов" во многом совпадает с понятием "микроэлементы". Отсюда, свинец, цинк, кадмий, ртуть, молибден, хром, марганец, никель, олово, кобальт, титан, медь, ванадий являются тяжелыми металлами. Тяжелые металлы, попадая в наш организм, остаются там навсегда, вывести их можно только с помощью белков молока и белых грибов. Достигая определенной концентрации в организме, они начинают свое губительное воздействие - вызывают отравления, мутации. Кроме того, что сами они отравляют организм человека, они еще и чисто механически засоряют его - ионы тяжелых металлов оседают на стенках тончайших систем организма и засоряют почечные каналы, каналы печени, таким образом, снижая фильтрационную способность этих органов. Соответственно, это приводит к накоплению токсинов и продуктов жизнедеятельности клеток нашего организма, т.е. самоотравление организма, т.к. именно печень отвечает за переработку ядовитых веществ, попадающих в наш организм, и продуктов жизнедеятельности организма, а почки - за их выведение наружу. Источники поступления тяжелых металлов делятся на природные (выветривание горных пород и минералов, эрозийные процессы, вулканическая деятельность) и техногенные (добыча и переработка полезных ископаемых, сжигание топлива, движение транспорта, деятельность сельского хозяйства). Часть техногенных выбросов, поступающих в природную среду в виде тонких аэрозолей, переносится на значительные расстояния и вызывает глобальное загрязнение. Другая часть поступает в бессточные водоемы, где тяжелые металлы накапливаются и становятся источником вторичного загрязнения, т.е. образования опасных загрязнений в ходе физико-химических процессов, идущих непосредственно в среде (например, образование из нетоксичных веществ ядовитого газа фосгена).

    Тяжелые металлы накапливаются в почве, особенно в верхних гумусовых горизонтах, и медленно удаляются при выщелачивании, потреблении растениями, эрозии и дефляции - выдувании почв. Период полуудаления или удаления половины от начальной концентрации составляет продолжительное время: для цинка - от 70 до 510 лет, для кадмия - от 13 до 110 лет, для меди - от 310 до 1500 лет и для свинца - от 740 до 5900 лет. В гумусовой части почвы происходит первичная трансформация попавших в нее соединений.

    Тяжелые металлы обладают высокой способностью к многообразным химическим, физико-химическим и биологическим реакциям. Многие из них имеют переменную валентность и участвуют в окислительно-восстановительных процессах. Тяжелые металлы и их соединения, как и другие химические соединения, способны перемещаться и перераспределяться в средах жизни, т.е. мигрировать. Миграция соединений тяжелых металлов происходит в значительной степени в виде органо-минеральной составляющей. Часть органических соединений, с которыми связываются металлы, представлена продуктами микробиологической деятельности. Ртуть характеризуется способностью аккумулироваться в звеньях «пищевой цепи». Микроорганизмы почвы могут давать устойчивые к ртути популяции, которые превращают металлическую ртуть в токсические для высших организмов вещества. Некоторые водоросли, грибы и бактерии способны аккумулировать ртуть в клетках.

    Ртуть, свинец, кадмий входят в общий перечень наиболее важных загрязняющих веществ окружающей среды, согласованный странами, входящими в ООН.

    2. Основные загрязнители окружающей среды

    Ртуть - очень опасный элемент. Он находится в воде, почве, воздухе в небольших, неопасных количествах. Но развитие тяжелой промышленности часто приводит к загрязнению и отравлению окружающей среды. Ртуть, накапливаясь в организме, разрушает его, причем это может передаваться и последующим поколениям. Действие ртути на организм происходит незаметно, бессимптомно. Головокружения, головная боль, рассеянность, бессонница, легкое подташнивание, воспаление десен - эти симптомы могут не привлечь к себе внимание. Но через некоторое время человек, отравленный ртутью, становится нервозным или же сонливым, подвержен неоправданным страхам, испытывает речевые нарушения, снижается иммунитет. В этом состоянии любая, даже слабая инфекция, может стать летальной. Заканчивается все потерей подвижности суставов. Ртутные соединения постепенно накапливаются в районах, прилегающих к большим предприятиям тяжелой промышленности. Из почвы, воды и воздуха ртуть попадает в мышцы, почки, мозг, нервы. Особенно опасна ртуть для плода, так как её накопление может вызвать врожденные аномалии. Ртутью могут быть отравлены хлеб, мука, рыба. Пары ртути или её органические соединения более опасны, чем ртуть в естественном виде. Рыба, плавающая в водах около Канады, США, Балтики содержит большое количество ртути. У людей, потребляющих эту рыбу, в организме тоже повышенное содержание ртути. Но есть вещество, которое нейтрализует ртуть. Это селен. Например в тунце высокое содержание и ртути, и селена, поэтому тунец не гибнет сам, и не вызывает отравление людей. Поступление с пищей маленьких доз ртути не опасно, так как она выводится из организма естественным путем. Но регулярное поступление даже малых доз может быть токсично.

    2.2 Свинец

    Одним из самых распространенных и опасных токсикантов является свинец. В земной коре он содержится в незначительных количествах. Вместе с тем мировое производство свинца составляет более 3,5Ч106 т в год, и только в атмосферу поступает в переработанном и мелкодисперсном состоянии 4,5Ч105 т свинца в год. Среднее содержание свинца в продуктах питания 0,2 мг/кг. Отмечено активное накопление свинца в растениях и мясе сельскохозяйственных животных вблизи промышленных центров, крупных автомагистралей. По данным К. Рейли взрослый человек получает ежедневно с пищей 0,1 - 0,5 мг свинца. Общее его содержание в организме составляет 120 мг. В организме взрослого человека усваивается в среднем 10 % поступившего свинца, у детей - 30 - 40 %. Из крови свинец поступает в мягкие ткани и кости, где депонируется в виде трифосфата. 90 % поступившего свинца выводится из организма. Механизм токсического действия свинца определяется по следующей схеме:

    Проникновение свинца в нервные и мышечные клетки, образование лактата свинца путем взаимодействия с молочной кислотой, затем фосфатов свинца, которые создают клеточный барьер для проникновения в нервные и мышечные клетки ионов кальция.

    Основными мишенями при воздействии свинца являются кроветворная, нервная, пищеварительная системы и почки. Отмечено его отрицательное влияние на половую функцию организма.

    2.3 Камдий

    Свое название этот «опасный» элемент получил от греческого слова, означающего цинковую руду, поскольку кадмий представляет собой серебристо-белый мягкий металл, применяемый в легкоплавких и других сплавах, для защитных покрытий, в атомной энергетике. Это побочный продукт, который получают при переработке цинковых руд. Большие количества кадмия очень опасны для здоровья. Люди отравляются кадмием, употребляя воду и зерновые, овощи, растущие на землях, расположенных вблизи от нефтеперегонных заводов и металлургических предприятий. Появляются невыносимая боль в мышцах, непроизвольные переломы костей (кадмий способен вымывать кальций из организма), деформация скелета, нарушения функций легких, почек и других органов. Излишек кадмия может вызывать злокачественные опухоли. Канцерогенное действие никотина, находящегося в табачном дыме, как правило, связано с присутствием кадмия. С рационом взрослый человек получает Cd до 150 мкг/кг и выше в сутки (92 - 94 %). Как и многие другие тяжелые металлы, кадмий имеет отчетливую тенденцию к накоплению в организме - период его полувыведения составляет 10-35 лет. К 50 годам его общее весовое содержание в теле человека может достигать 30-50 мг. Главным "хранилищем" кадмия в организме служат почки (30-60% всего количества) и печень (20-25%). Остальной кадмий находится в поджелудочной железе, селезенке, трубчатых костях, других органах и тканях. В основном кадмий находится в организме в связанном состоянии - в комплексе с белком-металлотионеином (являющимся, таким образом естественной защитой организма, по последним данным альфа-2 глобулин также связывает кадмий), и в таком виде он менее токсичен, хотя и далеко не безвреден. Даже "связанный" кадмий, накапливаясь годами способен привести к неприятностям со здоровьем, в частности к нарушению работы почек и повышенной вероятности образования почечных камней. К тому же часть кадмия остается в более токсичной ионной форме. Кадмий химически очень близок к цинку и способен замещать его в биохимических реакциях, например, выступать как псевдоактиватор или, наоборот, ингибитор содержащих цинк белков и ферментов (а их в организме человека более двухсот).

    3. Металлы в пищевых продуктах

    Некоторые металлы необходимы для нормального протекания физиологических процессов в организме человека. Однако при повышенных концентрациях они токсичны. Соединения металлов, попадая в организм, взаимодействуют с рядом ферментов, подавляя их активность.

    Широкое токсическое воздействие проявляют тяжелые металлы. Это воздействие может быть широким (свинец) или более ограниченным (кадмий). В отличие от органических загрязняющих веществ, металлы не разлагаются в организме, а способны лишь к перераспределению. Живые организмы имеют механизмы нейтрализации тяжелых металлов.

    Загрязнение пищевых продуктов наблюдается, когда сельскохозяйственные культуры выращиваются на полях вблизи промышленных предприятий или загрязнены городскими отходами. Медь и цинк концентрируются преимущественно в корнях, кадмий -- в листьях.

    Hg (ртуть): соединения ртути применяются в качестве фунгицидов (например, для протравливания посевного материала), используются при производстве бумажной массы, служат катализатором при синтезе пластмасс. Ртуть используется в электротехнической и электрохимической промышленности. Источниками ртути служат ртутные батареи, красители, люминесцентные лампы. Вместе с отходами производства ртуть в металлической или связанной форме попадает в промышленные стоки и воздух. В водных системах ртуть с помощью микроорганизмов может превращаться из относительно малотоксичных неорганических соединений в высокотоксичные органические (метилртуть (CH3)Hg). Загрязненной оказывается, главным образом, рыба.

    Метилртуть может стимулировать изменения в нормальном развитии мозга детей, а в более высоких дозах вызывать неврологические изменения у взрослых. При хроническом отравлении развивается микромеркуриализм -- заболевание, которое проявляется в быстрой утомляемости, повышенной возбудимости с последующим ослаблением памяти, неуверенности в себе, раздражительности, головных болях, дрожании конечностей.

    Руководством Codex CAC/GL 7 для любых видов рыбы, поступающих в международную торговлю (кроме хищной), установлен уровень 0,5 мг/кг, для хищной рыбы -- (акула, меч-рыба, тунец) -- 1 мг/кг.

    Pb (свинец): свинец применяется для производства аккумуляторных батарей, тетраэтилсвинца, для покрытия кабелей, в производстве хрусталя, эмалей, замазок, лаков, спичек, пиротехнических изделий, пластмасс и т. п. Такая активная деятельность человека привела к нарушениям в природном цикле свинца.

    Основной источник поступления свинца в организм -- растительная пища.

    Попадая в клетки, свинец (как и многие другие тяжелые металлы) дезактивирует ферменты. Реакция идет по сульфгидрильным группам белковых составляющих ферментов с образованием --S--Pb--S--.

    Свинец замедляет познавательное и интеллектуальное развитие детей, увеличивает кровяное давление и вызывает сердечнососудистые болезни взрослых. Изменения нервной системы проявляются в головной боли, головокружении, повышенной утомляемости, раздражительности, в нарушениях сна, ухудшении памяти, мышечной гипотонии, потливости. Свинец может заменять кальций в костях, становясь постоянным источником отравления. Органические соединения свинца еще более токсичны.

    В течение прошлого десятилетия уровни свинца в пище значительно снизились благодаря сокращению его эмиссии автомобилями. Высокоэффективным связующим для попавшего в организм свинца оказался пектин, содержащийся в кожуре апельсинов. Cd (кадмий): кадмий активнее свинца, и отнесен ВОЗ к веществам, наиболее опасным для здоровья человека. Он находит все большее применение в гальванике, производстве полимеров, пигментов, серебряно-кадмиевых аккумуляторов и батареек. На территориях, вовлеченных в хозяйственную деятельность человека, кадмий накапливается в различных организмах и с возрастом способен увеличиваться до критических для жизни величин. Отличительные свойства кадмия -- высокая летучесть и способность легко проникать в растения и живые организмы за счет образования ковалентных связей с органическими молекулами белков. В наибольшей мере аккумулирует кадмий из почвы растение табака.

    Кадмий по химическим свойствам родственен цинку, может замещать цинк в ряде биохимических процессов в организме, нарушая их (например, выступать как псевдоактиватор белков). Смертельной для человека может быть доза в 30--40 мг. Особенностью кадмия является большое время удержания: за 1 сутки из организма выводится около 0,1% полученной дозы.

    Симптомы кадмиевого отравления: белок в моче, поражение центральной нервной системы, острые костные боли, дисфункция половых органов. Кадмий влияет на кровяное давление, может служить причиной образования камней в почках (накопление в почках особенно интенсивно). Для курильщиков или занятых на производстве с использованием кадмия добавляется эмфизема легких.

    Не исключено, что это канцероген для человека. Содержание кадмия должно быть уменьшено, в первую очередь, в диетических продуктах. Максимальные уровни должны быть установлены настолько низкими как это разумно достижимо.

    Предельно допустимые концентрации тяжелых металлов и мышьяка в продовольственном сырье и пищевых продуктах.

    4. Усвоение тяжелых металлов растениями

    В настоящее время мало известно о механизмах накопления растениями тяжелых металлов, потому что до сих пор основное внимание уделялось усвоению соединений азота, фосфора и других элементов питания из почвы. Кроме того, сравнение полевых и модельных исследований показало, что загрязнение почвы и окружающей среды (смачивание листовых пластинок солями тяжелых металлов) в полевых условиях оказывает менее значительное изменение в росте и развитии растений, чем в лабораторных модельных опытах. В некоторых опытах высокое содержание металлов в почве стимулировало рост и развитие растений. Это связано с тем, что более низкая влажность почвы в полевых условиях снижает мобильность металлов, и это не позволяет их токсическому эффекту проявиться в полной мере. С другой стороны, это может быть связано с уменьшением токсичности почвы, обусловленной деятельностью почвенных микроорганизмов в результате снижения их численности при загрязнении почвы металлами. Кроме того, это явление можно объяснить косвенным влиянием тяжелых металлов, например, через воздействие их на некоторые биохимические процессы в почве, в результате чего возможно улучшение питательного режима растений. Таким образом, действие металлов на растительный организм зависит от природы элемента, содержания его в окружающей среде, характера почвы, формы химического соединения, срока от момента загрязнения. Формирование химического состава растительного организма определяется биохимическими особенностями различных видов организмов, их возрастом и биохимическими закономерностями связи между элементами в организме. Содержание одних и тех же химических элементов в различных частях растений может изменяться в широких пределах. Растения слабо усваивают многие тяжелые металлы - например, свинец - даже при их высоком содержании в почве из-за того, что они находятся в виде малорастворимых соединений. Поэтому концентрация свинца в растениях обычно не превышает 50 мг/кг, и даже индийская горчица, генетически предрасположенная к поглощению тяжелых металлов, накапливает свинец в концентрации всего 200 мг/кг, даже если растет на почве, сильно загрязненной этим элементом. Было обнаружено, что поступление тяжелых металлов в растения стимулируют некоторые вещества (например, этилендиаминтетрауксусная кислота), образующие с металлами в почвенном растворе устойчивые, но растворимые комплексные соединения. Так, стоило внести подобное вещество в почву, содержащую свинец в концентрации 1200 мг/кг, как концентрация тяжелого металла в побегах индийской горчицы возрастала до 1600 мг/кг. Успешные эксперименты с этилендиаминтетрауксусной кислотой позволяют предположить, что растения усваивают малорастворимые соединения тяжелых металлов в результате того, что их корни выделяют в почву какие-то природные вещества-комплексообразователи. Например, известно, что при недостатке в растениях железа их корни выделяют в почву так называемые фитосидерофоры, которые переводят в растворимое состояние содержащиеся в почве железосодержащие минералы. Однако было замечено, что фитосидерофоры способствуют и накоплению в растениях меди, цинка, марганца. Лучше всего изучены фитосидерофоры ячменя и кукурузы - мугеиновая и дезоксимугеиновая кислоты, а также выделяемая овсом авениковая кислота; роль фитосидерофоров, возможно, играют и некоторые белки, обладающие способностью связывать тяжелые металлы и делать их более доступными для растений. Доступность для растений тяжелых металлов, связанных с частицами почвы, повышают и находящиеся в мембранах корневых клеток ферменты редуктазы. Так, установлено, что у гороха, испытывающего недостаток железа или меди, в присутствии таких ферментов повышается способность восстанавливать ионы этих элементов. Корни некоторых растений (например, фасоли и других двудольных) могут при недостатке железа повышать кислотность почвы, в результате чего его соединения переходят в растворимое состояние (доказано, что поступление тяжелых металлов из почвы в растения возрастает параллельно с увлечением кислотности почвы; это происходит потому, что их соединения лучше растворяются в кислой среде). В повышении биологической доступности тяжелых металлов немалую роль может играть и корневая микрофлора. Почвенные микроорганизмы могут переводить нерастворимые формы солей тяжелых металлов в растворимые. О механизме переноса тяжелых металлов из корней в надземные части растений известно еще меньше. Были проведены эксперименты, показавшие, что в корнях соединения тяжелых металлов частично обезвреживаются и переводятся в более мобильную химическую форму, после чего они уже накапливаются в молодых побегах. Исследователи выяснили, что важная роль в этих преобразованиях принадлежит ряду мембранных белков, отвечающих за характерные особенности транспорта ионов металлов в цитоплазме и клеточных органеллах. Возможно, обычно малорастворимые соли тяжелых металлов перемещаются по сосудистой системе в виде каких-то комплексных соединений - например, с органическими кислотами типа лимонной.

    При увеличении содержания металлов в почве, снижается её общая биологическая активность, и это резко отражается на росте и развитии растений, причём разные растения реагируют на избыток металлов по-разному. Исследования показали, что металлы распределяются по органам растений неравномерно. Однако в одной и той же части растения концентрация химических элементов существенно изменялась в зависимости от фазы его развития и возраста. В наибольшей степени металлы накапливались в листьях. Это обусловлено многими причинами, одна из которых - локальное накопление металлов в результате перехода их в малоподвижную форму. Например, в случае медной интоксикации окраска некоторых листьев у исследуемых растений изменялась до красной и буро-коричневой, что свидетельствовало о разрушении хлорофилла.

    Для отдельных видов растений и животных характерны определённые диапазоны концентрации химических элементов, в том числе и тяжелых металлов. Величина средних содержаний одного и того же элемента в различных видах растений, произрастающих в одинаковых условиях, часто колеблются в 2-5 раз. В условиях аномально высоких концентраций определённого элемента в среде обитания организмов разница содержания этого элемента в различных видах растений возрастает. Резкое увеличение содержания одного или нескольких элементов в среде приводит их в разряд токсикантов. Токсичность тяжелых металлов связана с их физико-химическими свойствами, со способностью к образованию прочных соединений с рядом функциональных группировок на поверхности и внутри клеток.

    Реакция растений на повышенные концентрации ТМ.

    Концентрация в почве, мг/кг

    Реакция растений на повышенные концентрации ТМ

    Ингибирование дыхания и подавление процесса фотосинтеза, иногда увеличение содержания кадмия и снижение поступления цинка, кальция, фосфора, серы, снижение урожайности, ухудшение качества растениеводческой продукции. Внешние симптомы - появление темно-зеленых листьев, скручивание старых листьев, чахлая листва

    Нарушение активности ферментов, процессов транспирации и фиксации СО 2 , торможение фотосинтеза, ингибирование биологического восстановления NО 2 до NО, затруднение поступления и метабо-лизма в растениях ряда элементов питания. Внешние симптомы - задержка роста, повреждение корневой системы, хлороз листьев.

    Хлороз молодых листьев

    Ухудшение роста и развития растений, увядание надземной части, повреждение кор-невой системы, хлороз молодых листьев, резкое снижение содержания в растениях большинства незаменимых макро- и микроэлементов (К, Р, Fe, Mn, Cu, B и др.).

    Подавление процессов фотосинтеза и транспирации, появление признаков хлороза

    5. Негативное влияние тяжелых металлов на организм человека

    Токсичность - это мера несовместимости вредного вещества с жизнью. Степень токсического эффекта зависит от биологических особенностей пола, возраста и индивидуальной чувствительности организма; строения и физико-химических свойств яда; количества попавшего в организм вещества; факторов внешней среды (температура, атмосферное давление).

    Понятие об экологической патологии. Возросшая нагрузка на организм, обусловленная широким производством вредных для человека химических продуктов, попадающих в окружающую среду, изменила иммунобиологическую реактивность жителей городов, включая детское население. Это приводит к расстройствам основных регуляторных систем организма, способствуя массовому росту заболеваемости, генетическим нарушениям и другим изменениям, объединенных понятием - экологическая патология.

    В условиях экологического неблагополучия раньше других систем реагируют иммунная, эндокринная и центральная нервная системы, вызывая широкий спектр функциональных расстройств. Затем появляются нарушения обмена веществ и запускаются механизмы формирования экозависимого патологического процесса.

    Среди ксенобиотиков важное место занимают тяжелые металлы и их соли, которые в больших количествах выбрасываются в окружающую среду. К ним относятся известные токсичные микроэлементы (свинец, кадмий, хром, ртуть, алюминий и др.) и эссенциальные микроэлементы (железо, цинк, медь, марганец и др.), также имеющие свой токсический диапазон.

    Основным путем поступления тяжелых металлов в организм является желудочно-кишечный тракт, который наиболее уязвим к действию техногенных экотоксикантов.

    Спектр экологических воздействий на молекулярном, тканевом, клеточном и системном уровнях во многом зависит от концентрации и длительности экспозиции токсического вещества, комбинации его с другими факторами, предшествующего состояния здоровья человека и его иммунологической реактивности. Большое значение имеет генетически обусловленная чувствительность к влиянию тех или иных ксенобиотиков. Несмотря на разнообразие вредных веществ, существуют единые механизмы их воздействия на организм, как у взрослого человека, так и у ребенка.

    Отравления соединениями тяжелых металлов известны с древних времен. Упоминание об отравлениях «живым серебром» (сулема) встречается в IV веке. В середине века сулема и мышьяк были наиболее распространенными неорганическими ядами, которые использовались с криминальной целью в политической борьбе и в быту. Отравления соединениями тяжелых металлов часто встречались в нашей стране: в 1924-1925 гг. Было зарегистрировано 963 смертельных исхода от отравлений сулемой. Отравления соединениями меди преобладают в районах садоводства и виноделия, где для борьбы с вредителями используется медный купорос. В последние годы наиболее распространены отравления ртутью. Нередки случаи массовых отравлений, например, гранозаном после употребления семян подсолнечника, обработанного этим средством. Тяжелые металлы и их соединения могут поступать в организм человека через легкие, слизистые оболочки, кожу и желудочно-кишечный тракт. Механизмы и скорость проникновения их через разные биологические барьеры и среды зависят от физико-химических свойств указанных веществ, химического состава и условий внутренней среды организма. В результате взаимопревращений между поступившими в организм металлами или их соединениями и химическими веществами различных тканей и органов могут образоваться новые соединения металлов, обладающие иными свойствами и по-другому ведущие себя в организме. При этом в разных органах, вследствие особенностей обмена, состава и условий среды, пути превращения исходных соединений металлов могут быть различными. Отдельные металлы могут избирательно накапливаться в определенных органах и длительно задерживаться в них. В результате накопление металла в том или ином органе может быть или первичным, или вторичным.

    На примере отдельных металлов рассмотрим пути их поступления в организм через желудочно-кишечный тракт (ЖКТ) с продуктами питания (животного и растительного происхождения), а также токсическое действие.

    Два d-элемента - кобальт и никель, широко используют в современных промышленных технологиях. При высоком содержании их в окружающей среде эти элементы могут поступать в повышенных количествах в организм человека, вызывая отравления с тяжелыми последствиями.

    Кобальт является биоэлементом, который принимает активное участие в ряде биохимических процессов. Однако избыточное его поступление вызывает токсический эффект с разными повреждениями в системах окислительных превращений. Данный эффект обусловлен способностью кобальта вступать в связь с атомами кислорода, азота, серы, в конкурентные отношения с железом и цинком, входящими в состав активных центров многих ферментов. Соединения Cо(III) обладают сильной окислительной комплексообразовательной способностью.

    В отношении скорости сорбции чистого кобальта, его оксидов и солей в ЖКТ сведения разноречивы. В одних исследованиях отмечено слабое всасывание (11…30%) даже хорошо растворимых солей кобальта, в других указано на высокую сорбцию солей кобальта в тонком кишечнике (до 97%) в связи с хорошей их растворимостью в нейтральной и щелочной средах. На уровень сорбции влияет также величина дозы, поступившей перорально: при малых дозах сорбция больше, чем при больших.

    Ni(II) преобладает в биологических средах, образуя разные комплексы с химическими компонентами последних. Металлический никель и его оксиды из ЖКТ всасываются медленнее, чем его растворимые соли. Поступивший с водой никель абсорбируется легче, чем входящий в виде комплексов в состав пищи. В целом количество всосавшегося из ЖКТ никеля составляет 3…10%. В его транспорте участвуют те же белки, которые связывают железо и кобальт.

    Цинк, также относящийся к d-элементам и имеющий состояние окисления +2, является сильным восстановителем. Соли цинка хорошо растворимы в воде. При их поступлении наблюдается задержка на некоторое время с последующим постепенным попаданием в кровь и распределением в организме. Цинк может вызывать «цинковую» (литейную) лихорадку. Абсорбция цинка из ЖКТ достигает 50% от введенной дозы. На уровень абсорбции оказывает влияние количество цинка в пище и ее химический состав. Пониженный уровень цинка в пище способствует увеличению абсорбции этого металла до 80% от введенной дозы. Увеличению абсорбции цинка из ЖКТ способствуют белковая диета, пептиды и некоторые аминокислоты, которые, вероятно, образуют хелатные комплексы с металлом, а также этилендиаминтетраацетатом. Высокое содержание фосфора и меди в пище снижает абсорбцию цинка. Наиболее активно цинк всасывается в двенадцатиперстной кишке и верхней части тонкого кишечника.

    Ртуть (d-элемент) - единственный металл, который находится в обычных условиях в виде жидкости и интенсивно выделяет пары. Из неорганических соединений ртути наиболее опасны металлическая ртуть, выделяющая пары, и хорошо растворимые соли Hg(II), образующие ионы ртути, действием которых и определяется токсичность. Соединения двухвалентной ртути токсичнее, чем одновалентной. Выраженная токсичность ртути и ее соединений, отсутствие данных о сколько-нибудь заметных положительных физиологических и биохимических эффектах указанного микроэлемента заставляли исследователей относить его не только к биологически ненужным, но и опасным даже в ничтожных количествах из-за его широкой распространенности в природе. В последние десятилетия, однако, появляется все больше свидетельств и мнений о жизненно важной роли ртути. Надо отметить, что ртуть - один из самых токсичных металлов, она постоянно присутствует в природной среде (почве, воде, растениях), может в избытке поступать в организм человека через ЖКТ вместе с пищей и водой. Неорганические соединения ртути слабо всасываются в ЖКТ, в то время как органические, например метилртуть, абсорбируются почти полностью.

    Свинец, относящийся, как и олово, к p-элементам и являющийся в современную эпоху одним из наиболее распространенных металлозагрязнителей окружающей среды и, прежде всего, воздуха, к сожалению, в значительных количествах может поступать в организм человека ингаляционным путем. Свинец в виде нерастворимых соединений (сульфидов, сульфатов, хроматов) плохо всасывается из ЖКТ. Растворимые соли (нитраты, ацетаты) всасываются в несколько больших количествах (до 10%). При дефиците кальция и железа в пищевом рационе абсорбция свинца увеличивается.

    Из приведенных выше данных о распределении, накоплении и превращении ряда тяжелых металлов видно, что указанные процессы имеют много особенностей. Несмотря на различия в естественной биологической значимости разных металлов, все они при избыточном поступлении в организм вызывают токсические эффекты, сопряженные с нарушением нормального хода биохимических процессов и физиологических функций.

    Следует особо отметить то, что избирательное накопление и длительность задержки металлов в ткани или органе в значительной степени определяют поражение того или иного органа. Например, эндемические заболевания щитовидной железы в отдельных биогеохимических провинциях связывают с избыточным поступлением некоторых металлов и высоким содержанием их в самой железе. К таким металлам относят кобальт, марганец, хром, цинк. Еще хорошо известно поражение центральной нервной системы при отравлениях ртутью, марганцем, свинцом и таллием. Выведение металлов из организма в основном осуществляется через ЖКТ и почки. При этом следует иметь в виду, что небольшое количество металлов может выделяться с грудным молоком, потом и волосами. Скорость выведения и количество выделившегося металла за определенный промежуток времени зависит от пути поступления, дозы, свойства каждого конкретного соединения металла, прочности связи последнего с биолигандами и длительности его действия на организм. Например, разные соединения хрома выделяются из организма через кишечник, почки, с грудным молоком. Так соединения Cr(VI) превосходят по скорости выделения Cr(III). Лучше растворимый хромат натрия выделяется преимущественно через почки, а слаборастворимый хлорид хрома - кишечным и почечным путями. К другим металлам, которые выводятся двумя основными путями (через ЖКТ и почки), относят никель, ртуть и др. Нерастворимые соединения никеля даже при разных путях поступления в большем количестве выделяются через кишечник. Таким образом, выведение избыточных количеств разных металлов из организма человека является сложным биокинетическим процессом. Во многом он зависит от путей трансформации металлов в органах и тканях и скорости элиминации из них.

    Вредные вещества могут оказывать на организм специфическое действие, которое проявляется не в период воздействия и не сразу по его окончании, а в периоды жизни, отделенные от химической экспозиции многими годами и даже десятилетиями. Проявление этих эффектов возможно и в последующих поколениях. Под термином «отдаленный эффект» следует понимать развитие патологических процессов и состояний у индивидуумов, имевших контакт с химическими загрязнениями среды обитания в отдаленные сроки их жизни, а также в течение жизни их потомства. К нему относятся гонадотропное, эмбриотоксическое, канцерогенное, мутагенное действие.

    По опасности для здоровья человека тяжелые металлы делятся на следующие классы:

    1 класс (самый опасный): Cd, Hg, Se, Pb, Zn

    2 класс: Co, Ni, Cu, Mo, Sb, Cr

    3 класс: Ba, V, W, Mn, Sr

    Токсичность тяжелых металлов в организме человека.

    В таблице показана зависимость здоровья человека от уровня загрязнения тяжелыми металлами:

    6. Проведение опыта

    Для проведения опыта нами были взяты три образца: крупа гречневая, крахмал, ржаной хлеб. Навески по 5 грамм измельчают до муки, помещают в тигель и осторожно обугливают на электрической плитке и прокаливают в муфельной печи при температуре 500-550?. При работе с образцами нельзя допускать его воспламенения или разбрызгивания. Для ускорения озоления можно в тигель после охлаждения добавить несколько капель перекиси водорода, которую затем необходимо удалить в сушильном шкафу при температуре 90-100?, а сухой остаток снова прокалить в муфельной печи до полного озоления пробы.

    Полученная зола должна быть рыхлой, белого или серого цвета, без обугленных частиц. Затем образцы помещают в спектр и вычисляют содержание тяжелых металлов и примесей. По получению результатов исследования было выявлено, что содержание тяжелых металлов в образцах соответствует нормам. Результаты представлены в таблице.

    Заключение

    Неконтролируемое загрязнение окружающей среды тяжелыми металлами угрожает здоровью людей. Прием токсических веществ, приводит к необратимым изменениям внутренних органов. В результате развиваются неизлечимые болезни: нарушения желудочно-кишечного тракта, печени, почечные и печеночные колики, параличи. Нередки смертельные случаи.

    В связи с этим необходимо максимально снизить уровень поступления тяжелых металлов в организм человека. В частности, путем получения продукции растениеводства (пищи для человека и сельскохозяйственных животных, которые в свою очередь также являются источником продуктов питания для человека) свободной от загрязнения ТМ. Следовательно, необходимо проводить химический анализ почв на содержание каждого из наиболее опасных металлов. К сожалению, в Российской Федерации таких исследований не проводятся и поэтому невозможно судить о безопасности продукции растениеводства. Для ликвидации этой проблемы следует ввести ряд мероприятий, таких как, проведение агрохимического обследования угодий, составление картограмм содержания тяжелых металлов, подбор культур минимально потребляющих ТМ. Введение этих мер будет способствовать мониторингу содержания тяжелых металлов в пищевых продуктах и значительно уменьшит их содержание.

    Список литературы

    1. Посыпанов Г.С., Долгодворов В.Е., Коренев Г.Е. и др. Растениеводство. М.: ”Колос”, 1997.

    2. Лушников Е.К. Клиническая токсикология. М: Медицина, 1990.

    3. Душенков В., Фоскин Н. Фиторемедиация: зеленая революция. Доклад, Ратгерский университет, Нью-Джерси, США, 1999.

    4. http://eat-info.ru/references/pollutants/tyazhelye-metally/.

    5. http://ru.wikipedia.org/wiki/%D2%FF%E6%B8%EB%FB%E5_%EC%E5%F2%E0%EB%EB%FB.

    6. http://dic.academic.ru/dic.nsf/ecolog/1053/%D0%A2%D0%AF%D0%96%D0%95%D0%9B%D0%AB%D0%95.

    Размещено на Allbest.ru

    ...

    Подобные документы

      Тяжелые металлы и их вредное воздействие на организм человека. Характеристика шиповника майского. Анализ шиповника на содержание тяжелых металлов. Методика определения тяжелых металлов при совместном присутствии, их поступление в растения из почвы.

      курсовая работа , добавлен 02.06.2014

      Главные источники поступления тяжелых металлов, их высокая биологическая активность, опасность для организма. Токсичность тяжелых металлов, способность вызывать нарушения физиологических функций организма. Применение препаратов из цинка и меди в медицине.

      презентация , добавлен 10.11.2014

      Наиболее распространенные обстоятельства возникновения отравлений. Условия токсического действия веществ. Действие ядов на организм. Отравления кислотами и щелочами, оксидами углерода, соединениями тяжелых металлов, металлоорганическими соединениями.

      реферат , добавлен 13.09.2013

      Краткая характеристика главных степеней ожогов. Отличия III a от III б. Симптоматика при ожогах. Содержание первой помощи. Термический и химический ожог глаз. Действие щелочей, кислот и солей тяжелых металлов. Главные особенности при ожогах у детей.

      презентация , добавлен 25.04.2016

      Схемы поступления экотоксикантов в пищевые продукты. Чужеродные вещества из внешней среды. Аккумуляция экотоксикантов живыми организмами. Методы снижения концентрации тяжелых металлов. Технологические способы снижения радионуклидов в пищевой продукции.

      реферат , добавлен 03.11.2008

      Элементарный состав человека. Биологическая роль металлов в биохимических процессах. Поступление металлов в организм человека. Обнаружение металлов в водном растворе. Разложение пероксида водорода каталазой крови. Роль ионов кальция в свертывании крови.

      курсовая работа , добавлен 26.02.2012

      Курильщики как особая человеческая популяция. Полициклические ароматические углеводороды - наиболее опасные канцерогены. Содержание бензпирена в пищевых продуктах. Потенцирование канцерогенного влияния курения. Поступление свинца в организм с продуктами.

      реферат , добавлен 22.02.2010

      Классификация ожогов по глубине и типу повреждения. Химические ожоги. Кислоты и соли тяжелых металлов. Ожоговая болезнь. Правило девяток, сотни, индекс Франка. Сестринский уход в ожоговом отделении. Роль медицинской сестры при лечении пациентов с ожогами.

      курсовая работа , добавлен 04.04.2016

      Физиотерапия как неотъемлемая часть лечения и реабилитации после тяжелых травм. Механизмы воздействия на организм человека методов светолечения, механолечения, физикофармаколечения, водолечения, теплового лечения. Разнообразие методов электролечения.

      презентация , добавлен 22.12.2014

      Курительные смеси и миксы. Немного об энтеогенах. Эффект, наступающий после курения. Психологическая и физиологическая зависимость (абстинентный синдром, как при употреблении тяжелых наркотиков). Лечение и последствия курения "Спайса" и других смесей.

    , ТИПОВАЯ СХЕМА САНИТАРНО-МИКРОБИОЛОГИЧЕСКОГО КОНТРОЛЯ.doc , Найти значение функции.docx , виды контроля.pptx .

    45. Методы определения показателей безопасности (тяжелые металлы, пестициды, нитраты, радионуклиды) в сырье, полуфабрикатах и готовой продукции

    Под безопасностью продуктов питания следует понимать отсутствие опасности для здоровья человека при их употреблении, как с точки зрения острого негативного воздействия (пищевые отравления и пищевые инфекции), так и с точки зрения опасности отдаленных последствий (канцерогенное, мутагенное и тератогенное действие).

    С продуктами питания в организм человека могут поступать значительные количества веществ, опасных для его здоровья. Поэтому остро стоят проблемы, связанные с повышением ответственности за эффективность контроля качества пищевых продуктов, гарантирующих их безопасность для здоровья потребителя.

    Токсичные элементы (в частности тяжелые металлы) составляют обширную и весьма опасную в токсикологическом отношении группу веществ. Обычно рассматривают 14 элементов: Hg, Pb, Cd, As, Sb, Sn, Zn, Al, Be, Fe, Cu, Ba, Cr, Tl.

    Современные методы обнаружения и определения содержания микотоксинов в пищевых продуктах и кормах включают скрининг – методы - количественные аналитические и биологические методы.

    Скрининг – методы отличаются быстротой и удобны для проведения серийных анализов, позволяют быстро и надежно разделять загрязненные и незагрязненные образцы. К ним относятся такие широко распространенные методы, как миниколоночный метод определения афлатоксинов, охратоксина А и зеараленона; методы тонкослойной хроматографии (ТСХ-методы) для одновременного определения до 30 различных микотоксинов, флуоресцентый метод определения зерна , загрязненного афлатоксинами, и некоторые другие.

    Количественные аналитические методы определения микотоксинов представлены химическими, радиоиммунологическим и иммуноферментными методами. Химические методы являются в настоящее время наиболее распространенными.

    Консерванты – это вещества, подавляющие развитие микроорганизмов и применяемые для предотвращения порчи продуктов. В больших концентрациях эти вещества опасны для здоровья, поэтому Минздравом России определены предельно допустимые количества их в продуктах и установлена необходимость контроля за их содержанием.

    Определение диоксида серы . В ГОСТе описаны два метода определения: дистилляционный и йодометрический.

    Дистилляционный метод с предварительной отгонкой диоксида серы применяется при определении малых количеств вещества, а также при арбитражных анализах; йодометрический, сравнительно простой, но менее точный метод, используют при определении диоксида серы с массовой долей его в продукте более 0,01%.

    Дистилляционный метод основан на вытеснении свободного и связанного диоксида серы из продукта ортофосфорной кислотой и перегонке в токе азота в приемники с пероксидом водорода, где диоксид серы окисляется до серной кислоты. Количество полученной серной кислоты определяют ацидометрически – титрованием раствором гидроксида натрия или комплексонометрически – титрованием раствором трилона Б в присутствии эриохрома черного Т.

    Йодометрический метод заключается в высвобождении связанного диоксида серы при обработке щелочью вытяжки из навески продукта с последующим оттитровыванием раствором йода. По количеству израсходованного на титрование йода определяют общее количество диоксида серы.

    При определении сорбиновой кислоты используют либо спектрофотометрический, либо фотоколориметрический метод. Оба метода основаны на отгонке сорбиновой кислоты из навески анализируемого продукта в токе пара с последующим определением ее либо путем измерения оптической плотности отгона на спектрофотометре , либо после получения цветной реакции – на фотоэлектроколориметре.

    Среди тяжелых металлов наиболее опасны свинец, кадмий, ртуть и мышьяк.

    Поскольку металлы в пищевых продуктах находятся в связанном состоянии, непосредственное их определение невозможно. Поэтому первоначальной задачей химического анализа тяжелых металлов является удаление органических веществ – минерализация (озоление) рекомендуется при определении Cu, Pb, кадмия, Zn, Fe, мышьяка.

    Для определения содержания Cu, кадмия и Zn используют метод полярографии.

    Для олова – фотометрический метод, который основан на измерении интенсивности желтой окраски раствора комплексного соединения с кверцетином. Для определения используют минерализат, полученный мокрой минерализацией навески пробы продукта массой 5-10 г.

    Также фотометрические методы исследования применяют при определении Cu, Fe, мышьяка.

    Для определения ртути применяют колориметрический или атомно-абсорбционный метод, который основан на окислении ртути в двухвалетный ион в кислой среде и восстановлении ее в растворе до элементного состояния под воздействием сильного восстановителя.

    46. Методы определения минеральных веществ (зола, микро- и макроэлементы, хлориды) в сырье, полуфабрикатах и готовой продукции

    В зависимости от количества минеральных веществ в организме человека и пищевых продуктах их подразделяют на макро- и микроэлементы. Так, если массовая доля элемента в организме превышает 10 -2 %, то его следует считать микроэлементом. Доля микроэлементов в организме составляет 10 -3 -10 -5 %. Если содержание элемента ниже 10 -5 % , его считают ультрамикроэлементом.

    К макроэлементам относят калий, натрий, кальций, магний, фосфор, хлор, серу.

    Микроэлементы условно делят на две группы: абсолютно или жизненно необходимые (кобальт, железо, медь, цинк, марганец, йод, бром, фтор) и, так называемые, вероятно необходимые (алюминий, стронций, молибден, селен, никель, ванадий и некоторые другие). Микроэлементы называют жизненно необходимыми, если при их отсутствии или недостатке нарушается нормальная жизнедеятельность организма. К наиболее дефицитным минеральным веществам в питании современного человека относятся кальций и железо, к избыточным – натрий и фосфор.

    При переработке пищевого сырья, как правило, происходит снижение содержания минеральных веществ (кроме добавления пищевой соли). В растительных продуктах они теряются с отходами. Так, содержание ряда макро- и микроэлементов при получении крупы и муки после обработки зерна снижается , так как в удаляемых оболочках и зародышах этих компонентов находится больше, чем в целом зерне. Например, в среднем, в зерне пшеницы и ржи зольных элементов содержится около 1,7%, в муке же в зависимости от сорта от 0,5 (в высшем сорте) до 1,5% (в обойной).

    При очистке овощей и картофеля теряется от 10 до 30% минеральных веществ. Если их подвергают тепловой обработке, то в зависимости от технологии теряется еще от 5 до 30%.

    Мясные, рыбные продукты и птица в основном теряют такие макроэлементы, как кальций и фосфор, при отделении мякоти от костей. При тепловой обработке (варке, жарке, тушении) мясо теряет от 5 до 50% минеральных веществ.

    Для анализа минеральных веществ в основном используются физико-химические методы – оптические и электрохимические.

    Практически все эти методы требуют особой подготовки проб для анализа, которая заключается в предварительной минерализации объекта исследования. Минерализацию можно проводить двумя способами: «сухим» и «мокрым». «Сухая минерализация предполагает проведение при определенных условиях обугливания, сжигания и прокаливания исследуемого образца. «Мокрая» минерализация предусматривает еще и обработку объекта исследования концентрированными кислотами (чаще всего HNO 3 и H 2 SO 4).

    Наиболее часто применяемые методы исследования минеральных веществ, представлены ниже.

    Фотометрический анализ (молекулярная абсорбционная спектроскопия). Он используется для определения меди, железа, хрома, марганца, никеля и других элементов. Метод абсорбционной спектроскопии основан на поглощении молекулами вещества излучений в ультрафиолетовой, видимой и инфракрасной областях электромагнитного спектра. Анализ можно проводить спектрофотометрическим или фотоэлектроколориметрическим методами.

    Эмиссионный спектральный анализ . Методы эмиссионного спектрального анализа основаны на измерении длины волны , интенсивности и других характеристик света, излучаемого атомами и ионами вещества в газообразном состоянии. Эмиссионный спектральный анализ позволяет определить элементарный состав неорганических и органических веществ.

    Интенсивность спектральной линии определяется количеством возбужденных атомов в источнике возбуждения, которое зависит не только от концентрации элемента в пробе, но и от условий возбуждения. При стабильной работе источника возбуждения связь между интенсивностью спектральной линии и концентрацией элемента (если она достаточно мала) имеет линейный характер, т.е. в данном случае количественный анализ можно также проводить методом градуировочного графика.

    Наибольшее применение в качестве источника возбуждения получили электрическая дуга, искра, пламя. Температура дуги достигает 5000-6000 0 С. В дуге удается получить спектр почти всех элементов. При искровом разряде развивается температура 7000-10 000 0 С и происходит возбуждение всех элементов. Пламя дает достаточно яркий и стабильный спектр испускания. Метод анализа с использованием в качестве источника возбуждения пламени называют пламенно-эмиссионный анализом. Этим методом определяют свыше сорока элементов (щелочные и щелочно-земельные металлы, Cu 2+ , Mn 2+ и др.).

    Атомно-абсорбционная спектроскопия. Данный метод основан на способности свободных атомов элементов в газах пламени поглощать световую энергию при характерных для каждого элемента длинах волн.

    В атомно-абсорбционной спектроскопии практически полностью исключена возможность наложения спектральных линий различных элементов, т.к. их число в спектре значительно меньше, чем в эмиссионной спектроскопии.

    Уменьшение интенсивности резонансного излучения в условиях атомно-абсорбционной спектроскопии экспоненциальному кону убывания интенсивности в зависимости от толщины слоя и концентрации вещества, аналогичному закону Бугера-Ламберта-Бера

    lg J/J 0 = A = klc, (3.10)

    где J 0 – интенсивность падающего монохроматического света;

    J – интенсивность прошедшего через пламя света;

    k – коэффициент поглощения;

    l – толщина светопоглощающего слоя (пламени);

    с – концентрация.

    Постоянство толщины светопоглощающего слоя (пламени) достигается с помощью горелок специальной конструкции.

    Методы атомно-абсорбционного спектрального анализа находят широкое применение для анализа практически любого технического или природного объекта, особенно в тех случаях, когда необходимо определить небольшие количества элементов.

    Методики атомно-абсорбционного определения разработаны более чем для 70 элементов.

    Кроме спектральных методов анализа широкое применение нашли электрохимические методы, из которых выделяются нижеперечисленные.

    Ионометрия . Метод служит для определения ионов K + , Na + , Ca 2+ , Mn 2+ , F - , I - , Cl - и т.д.

    Метод основан на использовании ионоселективных электродов, мембрана которых проницаема для определенного типа ионов (отсюда, как правило, высокая селективность метода).

    Количественное содержание определяемого иона проводится либо с помощью градуировочного графика, который строится в координатах Е-рС, либо методом добавок. Метод стандартных добавок рекомендуется использовать для определения ионов в сложных системах , содержащих высокие концентрации посторонних веществ.

    Полярография . Метод переменно-токовой полярографии используют для определения токсичных элементов (ртуть, кадмий, свинец, медь, железо).

    Работа добавлена на сайт сайт: 2016-03-13

    Заказать написание уникльной работы

    ;font-family:"Times New Roman"">МИНОБРНАУКИ РОССИИ

    ;font-family:"Times New Roman"">Федеральное государственное бюджетное образовательное учреждение

    ;font-family:"Times New Roman"">высшего профессионального образования

    ;font-family:"Times New Roman"">«Тверской государственный технический университет»

    ;font-family:"Times New Roman"">(ТвГТУ)

    ;font-family:"Times New Roman"">Кафедра Биотехнологии и химии

    ;font-family:"Times New Roman"">Курсовая работа

    по теме: «Методы определения содержания тяжелых металлов в различных пищевых продуктах»

    ;font-family:"Times New Roman"">Выполнил: студент 3курса

    ;font-family:"Times New Roman"">дневного отделения

    ;font-family:"Times New Roman"">факультета ХТФ

    ;font-family:"Times New Roman"">группы СМ – 1101

    ;font-family:"Times New Roman"">Баурина А.А.

    Принял: доцент

    кафедры БТ и Х

    Ожимкова Е. В.

    ;font-family:"Times New Roman"">Тверь 2013

    ;font-family:"Times New Roman"">СОДЕРЖАНИЕ

    ;font-family:"Times New Roman"">ОПРЕДЕЛЕНИЯ 4

    ;font-family:"Times New Roman"">ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ 6

    ;font-family:"Times New Roman"">ВВЕДЕНИЕ 7

    1. ;font-family:"Times New Roman";color:#000000">Теоретические аспекты загрязнения пищевых продуктов 9
    2. ;font-family:"Times New Roman"">Источники загрязнения пищевых продуктов тяжёлыми металлами 9
    3. ;font-family:"Times New Roman"">Загрязнение химическими элементами продовольственного сырья 13

    ;font-family:"Times New Roman"">1.2.1 Ртуть 14

    ;font-family:"Times New Roman"">1.2.2 Свинец 15

    ;font-family:"Times New Roman"">1.2.3 Кадмий 17

    ;font-family:"Times New Roman"">1.2.4 Алюминий 18

    ;font-family:"Times New Roman"">1.2.5 Мышьяк 19

    ;font-family:"Times New Roman"">1.2.6 Медь 20

    ;font-family:"Times New Roman"">1.2.7 Цинк 21

    ;font-family:"Times New Roman"">1.2.8 Олово 22

    ;font-family:"Times New Roman"">1.2.9 Железо 24

    1. ;font-family:"Times New Roman"">Классификация и методы определения тяжелых металлов в пищевых продуктах 26
    2. ;font-family:"Times New Roman"">Понятие и методы качественного и количественного анализа 26
    3. ;font-family:"Times New Roman"">Качественный анализ 26
    4. ;font-family:"Times New Roman"">Количественный анализ 29
    5. ;font-family:"Times New Roman"">Классификация и характеристика методов исследования пищевых продуктов 33
    6. ;font-family:"Times New Roman"">Физические и физико-химические методы 33
    7. ;font-family:"Times New Roman"">Химические и биохимические методы 37
    8. ;font-family:"Times New Roman"">Микробиологические методы 38
    9. ;font-family:"Times New Roman"">Физиологические методы 38
    10. ;font-family:"Times New Roman"">Технологические методы 39
    11. ;font-family:"Times New Roman"">Методы определения тяжёлых металлов в пищевых продуктах 40

    ;font-family:"Times New Roman"">4.1 Методы определения мышьяка 40

    ;font-family:"Times New Roman"">4.2 Методы определения кадмия 41

    ;font-family:"Times New Roman"">4.3 Методы определения свинца 45

    ;font-family:"Times New Roman"">4.4 Методы определения ртути 45

    ;font-family:"Times New Roman"">4.5 Методы определения цинка 48

    ;font-family:"Times New Roman"">4.6 Методы определения железа 49

    ;font-family:"Times New Roman"">ЗАКЛЮЧЕНИЕ 52

    ;font-family:"Times New Roman"">СПИСОК ЛИТЕРАТУРЫ 54

    ;font-family:"Times New Roman"">
    ОПРЕДЕЛЕНИЯ

    ;font-family:"Times New Roman"">В данной курсовой работе применяются следующие термины с соответствующими определениями:

    ;font-family:"Times New Roman"">Антагония – это ;font-family:"Times New Roman";background:#ffffff">противостояние, непримиримое отвержение.

    ;font-family:"Times New Roman"">Возгон – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">оксиды легко возгоняемых металлов, образующиеся при высоких температурах в некоторых металлургических процессах. ;font-family:"Arial";color:#000000;background:#ffffff">

    ;font-family:"Times New Roman"">Гальванизация – это метод покрытия одного металла каким-либо другим путем электролиза.

    ;font-family:"Times New Roman"">Гипотония – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">пониженный тонус сосудов или мышц.

    ;font-family:"Times New Roman"">Инактивация – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">частичная или полная потеря биологически активным веществом или агентом своей активности.

    ;font-family:"Times New Roman"">Инсектициды – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">химические препараты для уничтожения вредных насекомых.

    ;font-family:"Times New Roman"">Интоксикация – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">отравление организма образовавшимися в нём самом или поступившими извне токсическими веществами.

    ;font-family:"Times New Roman"">Кофактор – это ;font-family:"Arial";color:#000000;background:#ffffff"> ;font-family:"Times New Roman";color:#000000;background:#ffffff">вещества, необходимые для каталитического действия того или иного фермента.

    ;font-family:"Times New Roman"">Озоление – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">химическая операция, состоящая в разрушении органического субстрата (обычно посредством сжигания).

    ;font-family:"Times New Roman"">Сидеоз – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">заболевание человека, вызываемое осаждением в лёгких пыли, содержащей железо.

    ;font-family:"Times New Roman"">Тяжелые металлы – это группа химических элементов со свойствами металлов(в том числе и полуметаллы) и значительным атомным весом либо плотностью.

    ;font-family:"Times New Roman"">ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

    ;font-family:"Times New Roman"">В данной курсовой работе применяются следующие обозначения и сокращения:

    ;font-family:"Times New Roman"">АПДК – ;font-family:"Times New Roman";color:#010101;background:#ffffff">ООО ПКФ "Агропромдоркомплект-Урал"

    ;font-family:"Times New Roman"">ВОЗ – всемирная организация здравоохранения

    ;font-family:"Times New Roman"">МИБК – ;font-family:"Times New Roman";color:#000000;background:#ffffff">метил изобутил кетон

    ;font-family:"Times New Roman"">ДСД – допустимая суточная доза

    ;font-family:"Times New Roman"">ПДК – предельно-допустимые концентрации

    ;font-family:"Times New Roman"">ТЭЦ – ;font-family:"Times New Roman";color:#000000;background:#ffffff">тепловая электростанция

    ;font-family:"Times New Roman"">ФАО – продовольственная и сельскохозяйственная организация

    ;font-family:"Times New Roman"">ВВЕДЕНИЕ

    ;font-family:"Times New Roman";color:#000000">За последнее время большое значение приобрела проблема, связанная с загрязнением пищевых продуктов тяжёлыми металлами и другими химическими веществами. В атмосферу идет огромный выброс токсичных веществ со всевозможных производств: фабрик, заводов и т.д. Попадая в атмосферу и воду, тем самым они загрязняют и почву, а с ней и растения. Растения, в свою очередь, это основа всех пищевых продуктов.

    ;font-family:"Times New Roman";color:#000000">Тяжелые металлы также попадают в мясо, молоко, так как животные, употребляя растения, употребляют тем самым и токсичные элементы, то есть тяжелые металлы, которые накапливаются в растениях. Завершающим звеном в этой цепочке, является человек, который потребляет большое разнообразие пищевых продуктов.

    ;font-family:"Times New Roman";color:#000000">Тяжелые металлы способны накапливаться и трудно выводиться из организма. Они пагубно влияют на организм человека и здоровья в целом.

    ;font-family:"Times New Roman";color:#000000">Поэтому важной задачей является разработка методов определения токсичных веществ в пищевых продуктах.

    ;font-family:"Times New Roman";color:#000000">При этом весьма важным вопросом является также определение среднего и предельно допустимого содержания концентраций металлов в пищевых продуктах.

    ;font-family:"Times New Roman";color:#000000">Целью курсовой работы является:

    1. ;font-family:"Times New Roman";color:#000000">рассмотрение методов определения содержания тяжёлых металлов в различных пищевых продукта ;font-family:"Times New Roman"">х
    2. ;font-family:"Times New Roman"">
    3. ;font-family:"Times New Roman"">
    4. ;font-family:"Times New Roman"">
    5. ;font-family:"Times New Roman"">поведение тяжелых металлов в воздухе, в воде, в почве

    ;font-family:"Times New Roman";color:#000000">
    1. Теоретические аспекты загрязнения пищевых продуктов

    ;font-family:"Times New Roman";color:#000000">1.1 ;font-family:"Times New Roman"">Источники загрязнения пищевых продуктов тяжёлыми металлами

    ;font-family:"Times New Roman"">Термин "тяжелые металлы" связан с высокой относительной атомной массой. Эта характеристика обычно сравниваются с представлением о высокой токсичности. Одним из признаков, которые позволяют относить металлы к тяжелым, является их плотность.

    ;font-family:"Times New Roman"">Согласно сведениям, представленным в "Справочнике по элементарной химии" под ред. А.Т.Пилипенко (1977), к тяжелым металлам относятся элементы, плотность которых более 5 г/см3. Таким образом, к тяжелым металлам относят более 40 химических элементов с относительной плотностью более 6. Число же опасных загрязнителей, если учитывать токсичность, стойкость и способность накапливаться во внешней среде, а также масштабы распространения указанных металлов, значительно меньше.

    ;font-family:"Times New Roman"">Прежде всего, представляют интерес те металлы, которые наиболее широко и в значительных объемах используются в производственной деятельности и в результате накопления во внешней среде представляют серьезную опасность с точки зрения их биологической активности и токсических свойств. К ним относят: свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и мышьяк.

    ;font-family:"Times New Roman"">В атмосферном воздухе тяжелые металлы присутствуют в форме органических и неорганических соединений в виде пыли и аэрозолей, а также в газообразной элементной форме (ртуть). При этом аэрозоли свинца, кадмия, меди и цинка состоят преимущественно их субмикронных частиц диаметром 0,5–1 мкм, а аэрозоли никеля и кобальта – из крупнодисперсных частиц (более 1 мкм), которые образуются в основном при сжигании дизельного топлива. В водных средах металлы присутствуют в трех формах: взвешенные частицы, коллоидные частицы и растворенные соединения. Последние представлены свободными ионами и растворимыми комплексными соединениями с органическими (гуминовые и фульвокислоты) и неорганическими (галогениды, сульфаты, фосфаты, карбонаты) лигандами. Большое влияние на содержание этих элементов в воде оказывает гидролиз, во многом определяющий форму нахождения элемента в водных средах. Значительная часть тяжелых металлов переносится поверхностными водами во взвешенном состоянии.

    ;font-family:"Times New Roman"">В почвах тяжелые металлы содержатся в водорастворимой, ионообменной и непрочно адсорбированной формах. Водорастворимые формы, как правило, представлены хлоридами, нитратами, сульфатами и органическим комплексными соединениями. Кроме того, ионы тяжелых металлов могут быть связаны с минералами как часть кристаллической решетки.

    ;font-family:"Times New Roman"">В таблице 1 приведены биогеохимические свойства тяжёлых металлов.

    ;font-family:"Times New Roman"">Таблица 1. Биогеохимические свойства тяжёлых металлов

    ">Свойство

    " xml:lang="uk-UA" lang="uk-UA">С " xml:lang="en-US" lang="en-US">d

    " xml:lang="en-US" lang="en-US">Co

    " xml:lang="en-US" lang="en-US">Cu

    " xml:lang="en-US" lang="en-US">Hg

    " xml:lang="en-US" lang="en-US">Ni

    " xml:lang="en-US" lang="en-US">Pb

    " xml:lang="en-US" lang="en-US">Zn

    ">Биохимическая активность

    ">В

    ">В

    ">В

    ">В

    ">В

    ">В

    ">В

    ">Токсичность

    ">В

    ">У

    ">У

    ">В

    ">У

    ">В

    ">У

    ">Канцерогенность

    ">–

    ">В

    ">–

    ">–

    ">В

    ">–

    ">–

    ">Обогащение аэрозолей

    ">В

    ">Н

    ">В

    ">В

    ">Н

    ">В

    ">В

    ">Минеральная форма распространения

    ">В

    ">В

    ">Н

    ">В

    ">Н

    ">В

    ">Н

    ">Органическая форма распространения

    ">В

    ">В

    ">В

    ">В

    ">В

    ">В

    ">В

    ">Подвижность

    ">В

    ">Н

    ">У

    ">В

    ">Н

    ">В

    ">У

    ">Тенденция к биоконцентрированию

    ">В

    ">В

    ">У

    ">В

    ">В

    ">В

    ">У

    ">Эффективность накопления

    ">В

    ">У

    ">В

    ">В

    ">У

    ">В

    ">В

    ">Комплексообразующая способность

    ">У

    ">Н

    ">В

    ">У

    ">Н

    ">Н

    ">В

    ">Склонность к гидролизу

    ">У

    ">Н

    ">В

    ">У

    ">У

    ">У

    ">В

    ">Растворимость соединений

    ">В

    ">Н

    ">В

    ">В

    ">Н

    ">В

    ">В

    ">Время жизни

    ">В

    ">В

    ">В

    ">Н

    ">В

    ">Н

    ">В

    ;font-family:"Times New Roman"">где В – высокая, У – умеренная, Н – низкая.

    ;font-family:"Times New Roman"">Добыча и переработка не являются самым мощным источником загрязнения среды металлами. Валовые выбросы от этих предприятий значительно меньше выбросов от предприятий теплоэнергетики. Не металлургическое производство, а именно процесс сжигания угля является главным источником поступления в биосферу многих металлов. В угле и нефти присутствуют все металлы. Значительно больше, чем в почве, токсичных химических элементов, включая тяжелые металлы, в золе электростанций, промышленных и бытовых топок. Выбросы в атмосферу при сжигании топлива имеют особое значение. Например, количество ртути, кадмия, кобальта, мышьяка в них в 3–8 раз превышает количество добываемых металлов. Известны данные о том, что только один котлоагрегат современной ТЭЦ, работающий на угле, за год выбрасывает в атмосферу в среднем 1–1,5 т паров ртути. Тяжелые металлы содержатся и в минеральных удобрениях .

    ;font-family:"Times New Roman"">Наряду со сжиганием минерального топлива важнейшим путем техногенного рассеяния металлов является их выброс в атмосферу при высокотемпературных технологических процессах (металлургия, обжиг цементного сырья и др.), а также транспортировка, обогащение и сортировка руды.

    ;font-family:"Times New Roman"">Техногенное поступление тяжелых металлов в окружающую среду происходит в виде газов и аэрозолей (возгона металлов и пылевидных частиц) и в составе сточных вод. Металлы сравнительно быстро накапливаются в почве и крайне медленно из нее выводятся: период полураспада цинка – до 500 лет, кадмия – до 1100 лет, меди – до 1500 лет, свинца – до нескольких тысяч лет.

    ;font-family:"Times New Roman"">Существенный источник загрязнения почвы металлами – применение удобрений из шламов, полученных из промышленных и канализационных очистных сооружений.

    ;font-family:"Times New Roman"">В выбросах металлургических производств тяжелые металлы находятся, в основном, в нерастворимой форме. По мере удаления от источника загрязнения наиболее крупные частицы оседают, доля растворимых соединений металлов увеличивается, и устанавливаются соотношения между растворимой и нерастворимыми формами. Аэрозольные загрязнения, поступающие в атмосферу, удаляются из нее путем естественных процессов самоочищения. Важную роль при этом играют атмосферные осадки. В итоге выбросы промышленных предприятий в атмосферу, сбросы сточных вод создают предпосылки для поступления тяжелых металлов в почву, подземные воды и открытые водоемы, в растения, донные отложения и животных.

    ;font-family:"Times New Roman"">Максимальной способностью концентрировать тяжелые металлы обладают донные отложения, планктон, бентос и рыбы.

    ;font-family:"Times New Roman"">
    1.2 Загрязнение химическими элементами продовольственного сырья

    ;font-family:"Times New Roman"">Токсичные элементы (в частности, некоторые тяжелые металлы) составляют обширную и весьма опасную в токсикологическом отношении группу веществ. К ним относятся: ртуть, свинец, кадмий, цинк, мышьяк, алюминий, медь, железо, стронций и другие.

    ;font-family:"Times New Roman"">Разумеется, не все перечисленные элементы являются ядовитыми, некоторые из них необходимы для нормальной жизнедеятельности человека и животных. Поэтому часто трудно провести четкую границу между биологически необходимыми и вредными для здоровья человека веществами.

    ;font-family:"Times New Roman"">В большинстве случаев реализация того или иного эффекта зависит от концентрации. При повышении оптимальной физиологической концентрации элемента в организме может наступить интоксикация, а дефицит многих элементов в пище и воде может привести к достаточно тяжелым и трудно распознаваемым явлениям недостаточности.

    ;font-family:"Times New Roman"">Загрязнение водоемов, атмосферы, почвы, сельскохозяйственных растений и пищевых продуктов токсичными металлами происходит за счет:

    1. ;font-family:"Times New Roman"">выбросов промышленных предприятий (особенно угольной, металлургической и химической промышленности);
    2. ;font-family:"Times New Roman"">выбросов городского транспорта (имеется в виду загрязнение свинцом от сгорания этилированного бензина);
    3. ;font-family:"Times New Roman"">применения в консервном производстве некачественных внутренних покрытий, технологии припоев;
    4. ;font-family:"Times New Roman"">контакта с оборудованием (для пищевых целей допускается весьма ограниченное число сталей и других сплавов).

    ;font-family:"Times New Roman"">Для большинства продуктов установлены ПДК токсичных элементов, к детским и диетическим продуктам предъявляются более жесткие требования.

    ;font-family:"Times New Roman"">Наибольшую опасность из вышеназванных элементов представляют ртуть, свинец, кадмий.

    ;font-family:"Times New Roman"">1.2.1 Ртуть

    ;font-family:"Times New Roman"">Ртуть – один из самых опасных и высокотоксичных элементов, обладающих способностью накапливаться в растениях и в организме животных и человека, т. е. является ядом кумулятивного действия.

    ;font-family:"Times New Roman"">Токсичность ртути зависит от вида ее соединений, которые по–разному всасываются, метаболизируются и выводятся из организма.

    ;font-family:"Times New Roman"">Наиболее токсичны алкилртутные соединения с короткой цепью – метилртуть, этилртуть, диметилртуть. Механизм токсичного действия ртути связан с ее взаимодействием с сульфгидрильными группами белков. Блокируя их, ртуть изменяет свойства или инактивирует ряд жизненно важных ферментов. Неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция меди, цинка, селена; органические – обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена. Защитным эффектом при воздействии ртути на организм человека обладают цинк и, особенно, селен. Предполагают, что защитное действие селена обусловлено диметилированием ртути и образованием нетоксичного соединения – селено– ртутного комплекса. О высокой токсичности ртути свидетельствуют и очень низкие значения ПДК: 0,0003мг/м ;font-family:"Times New Roman";vertical-align:super">3 ;font-family:"Times New Roman""> в воздухе и 0,0005 мг/л в воде.

    ;font-family:"Times New Roman"">В организм человека ртуть поступает в наибольшей степени с рыбопродуктами (80–600 мкг/кг), в которых ее содержание может многократно превышать ПДК. Мясо рыбы отличается наибольшей концентрацией ртути и ее соединений, поскольку активно аккумулирует их из воды и корма, в который входят различные гидробионты, богатые ртутью. Организм рыб способен синтезировать метилртуть, которая накапливается в печени. У некоторых рыб в мышцах содержится белок – металлотионеин, который с различными металлами, в том числе и с ртутью, образует комплексные соединения, способствуя тем самым накапливанию ртути в организме и передаче ее по пищевым цепям.

    ;font-family:"Times New Roman"">Из других пищевых продуктов характерно содержание ртути: в продуктах животноводства: мясо, печень, почки, молоко, сливочное масло, яйца (от 2 до 20 мкг/кг); в съедобных частях сельскохозяйственных растений: овощи, фрукты, бобовые, зерновые в шляпочных грибах (6–447 мкг/кг), причем в отличие от растений в грибах может синтезироваться метилртуть. При варке рыбы и мяса концентрация ртути в них снижается, при аналогичной обработке грибов остается неизменной. Это различие объясняется тем, что в грибах ртуть связана с аминогруппами азотсодержащих соединений, в рыбе и мясе – с серосодержащими аминокислотами.

    ;font-family:"Times New Roman"">1.2.2 Свинец

    ;font-family:"Times New Roman"">Свинец – один из самых распространенных и опасных токсикантов. История его применения очень древняя, что связано с относительной простотой его получения и большой распространенностью в земной коре ;font-family:"Times New Roman"">(%). ;font-family:"Times New Roman""> Соединения свинца – Рb ;font-family:"Times New Roman";vertical-align:sub">3 ;font-family:"Times New Roman"">O ;font-family:"Times New Roman";vertical-align:sub">4 ;font-family:"Times New Roman""> и PbSO ;font-family:"Times New Roman";vertical-align:sub">4 ;font-family:"Times New Roman""> – основа широко применяемых пигментов: сурика и свинцовых белил. Глазури, которые используются для покрытия керамической посуды, также содержат соединения Pb. Металлический свинец со времен Древнего Рима применяют при прокладке водопроводов. В настоящее время перечень областей его применения очень широк: производство аккумуляторов, электрических кабелей, химическое машиностроение, атомная промышленность, производство эмалей, лаков, хрусталя, пиротехнических изделий, спичек, пластмасс и т.п. Мировое производство свинца составляет более т в год. В результате производственной деятельности человека в природные воды ежегодно попадает 500 – 600 тыс. т, а в атмосферу в переработанном и мелкодисперсном состоянии выбрасывается около 450 тыс.т, подавляющее большинство которого оседает на поверхности Земли. Основным источниками загрязнения атмосферы свинцом являются выхлопные газы автотранспорта (260 тыс. т) и сжигание каменного угля (около 30 тыс. т). В тех странах, где использование бензина с добавлением тетраэтилсвинца сведено к минимуму, содержание свинца в воздухе удалось многократно снизить. Следует подчеркнуть, что многие растения накапливают свинец, который передается по пищевым цепям и обнаруживается в мясе и молоке сельскохозяйственных животных, особенно активное накопление свинца происходит вблизи промышленных центров и крупных автомагистралей.

    ;font-family:"Times New Roman"">Ежедневное поступление свинца в организм человека с пищей – 0,1 – 0,5 мг; с водой – 0,02 мг. Содержание свинца в мг/кг в различных продуктах составляет от 0,01 до 3,0.

    ;font-family:"Times New Roman"">В организме человека усваивается в среднем 10 % поступившего свинца, у детей – 30 – 40 %. Из крови свинец поступает в мягкие ткани и кости, где депонируется в виде трифосфата. Механизм токсического действия свинца имеет двойную направленность. Во–первых, блокада SH – групп белков и, как следствие, инактивация ферментов, во-вторых, проникновение Pb в нервные и мышечные клетки, образование лактата свинца, затем фосфата свинца, которые создают клеточный барьер для проникновения ионов Са ;font-family:"Times New Roman";vertical-align:super">2+ ;font-family:"Times New Roman"">.

    ;font-family:"Times New Roman"">Основными мишенями при воздействии свинца являются кроветворная, нервная и пищеварительная системы, а также почки. Свинцовая интоксикация может приводить к серьезным нарушениям здоровья, проявляющихся в частых головных болях, головокружениях, повышенной утомляемости, раздражительности, ухудшениях сна, гипотонии, а наиболее тяжелых случаях к параличам, умственной отсталости. Неполноценное питание, дефицит в рационе кальция, фосфора, железа, пектинов, белков, увеличивает усвоение свинца, а следовательно – его токсичность. Допустимая суточная доза (ДСД) свинца составляет 0,007 мг/кг; величина ПДК в питьевой воде – 0,05 мг/л.

    ;font-family:"Times New Roman"">Мероприятия по профилактике загрязнения свинцом сырья и пищевых продуктов должны включать государственный и ведомственный контроль за промышленными выбросами свинца в атмосферу, водоемы и почву. Необходимо существенно снизить или полностью исключить применение тетраэтилсвинца в бензине, красителях, упаковочных материалах и т.п.

    ;font-family:"Times New Roman"">1.2.3 Кадмий

    ;font-family:"Times New Roman"">Кадмий широко применяется в различных отраслях промышленности. В воздух кадмий поступает вместе со свинцом при сжигании топлива на ТЭЦ, с газовыми выбросами предприятий, производящих или использующих кадмий. Загрязнение почвы кадмием происходит при оседании кадмий – аэрозолей из воздуха и дополняется внесением минеральных удобрений (суперфосфата, фосфата калия, селитры).

    ;font-family:"Times New Roman"">В некоторых странах соли кадмия применяют в качестве антисептических и антигельминтных препаратов в ветеринарии. Все это определяет основные пути загрязнения кадмием окружающей среды, а следовательно, продовольственного сырья и пищевых продуктов.

    ;font-family:"Times New Roman"">Содержание кадмия (в мкг/кг) в различных продуктах следующее. Растительные продукты: зерновые – 28–95; горох – 15–19; картофель – 12–50; капуста – 2–26; фрукты – 9–42; грибы – 100–500; в продуктах животноводства: молоко – 2,4; творог – 6,0; яйца – 23–250.

    ;font-family:"Times New Roman"">Установлено, что приблизительно 80 % кадмия поступает в организм человека с пищей, 20 % – через легкие из атмосферы и при курении. С рационом взрослый человек получает до 150 мкг/кг и выше кадмия в сутки. В одной сигарете содержится 1,5 – 2,0 мкг Cd.

    ;font-family:"Times New Roman"">Подобно ртути и свинцу, кадмий не является жизненно необходимым металлом. Попадая в организм, кадмий проявляет сильное токсическое действие, главной мишенью которого являются почки.

    ;font-family:"Times New Roman"">Механизм токсического действия кадмия связан с блокадой сульфгидрильных групп белков; кроме того он является антагонистом цинка, кобальта, селена, ингибирует активность ферментов, содержащих указанные металлы.

    ;font-family:"Times New Roman"">Известна способность кадмия нарушать обмен железа и кальция. Все это может привести к широкому спектру заболеваний: гипертоническая болезнь, анемия, ишемическая болезнь сердца, почечная недостаточность и другие.

    ;font-family:"Times New Roman"">Отмечены канцерогенный, мутагенный и тератогенный эффекты кадмия. По рекомендациям ВОЗ допустимая суточная доза (ДСД) кадмия – 1 мкг/кг массы тела.

    ;font-family:"Times New Roman"">Большое значение в профилактике интоксикации кадмием имеет правильное питание (включение в рацион белков, богатых серосодержащими аминокислотами, аскорбиновой кислоты, железа, цинка, селена, кальция), контроль за содержанием кадмия и исключение из рациона продуктов, богатых кадмием.

    ;font-family:"Times New Roman"">1.2.4 Алюминий

    ;font-family:"Times New Roman""> Первые данные о токсичности алюминия были получены в 70–х годах прошлого века, и это явилось неожиданностью для человечества. Будучи третьим, по распространенности элементом земной коры и обладая ценными качествами, Al нашел широкое применение в технике и быту. Поставщиками алюминия в организм человека является алюминиевая посуда, если она контактирует с кислой или щелочной средой, вода которая обогащается ионами Al ;font-family:"Times New Roman";vertical-align:super">3+ ;font-family:"Times New Roman""> при обработке ее сульфатом алюминия на водоочистительных станциях.

    ;font-family:"Times New Roman"">Существенную роль в загрязнении окружающей среды ионами Al ;font-family:"Times New Roman";vertical-align:super">3+ ;font-family:"Times New Roman"">играют и кислотные дожди. Не следует злоупотреблять содержащими гидроксид алюминия лекарствами: противогеморроидальными, противоартритными, понижающими кислотность желудочного сока. Как буферную добавку вводят гидроксид алюминия и в губную помаду. Среди пищевых продуктов наивысшей концентрацией алюминия (до 20 мг/г) обладает чай.

    ;font-family:"Times New Roman"">Поступающие в организм человека ионы Al ;font-family:"Times New Roman";vertical-align:super">3+ ;font-family:"Times New Roman""> в форме нерастворимого фосфата выводятся с фекалиями, частично всасываются в кровь и выводятся почками. При нарушении деятельности почек происходит накапливание алюминия, которое приводит к нарушению метаболизма Ca, Mg, P, F, сопровождающееся ростом хрупкости костей, развитием различных форм анемии. Кроме того, были обнаружены: нарушение речи, ориентации, провалы в памяти, и т.п. Все это позволяет приблизить «безобидный», считавшийся нетоксичным до недавнего времени алюминий к «мрачной тройке» супертоксикантов: ртуть, свинец, кадмий.

    ;font-family:"Times New Roman"">1.2.5 Мышьяк

    ;font-family:"Times New Roman"">Мышьяк как элемент в чистом виде ядовит только в высоких концентрациях. Он принадлежит к тем микроэлементам, необходимость которых для жизнедеятельности организма человека не доказана, за исключением его стимулирующего действия на процесс кроветворения. Соединения же мышьяка, такие как мышьяковистый ангидрид, арсениты и арсенаты, сильно токсичны.

    ;font-family:"Times New Roman"">Мышьяк содержится во всех объектах биосферы (в земной коре – 2 мг/кг, в морской воде – 5 мкг/кг).

    ;font-family:"Times New Roman"">Известными источниками загрязнения окружающей среды мышьяком являются электростанции, использующие бурый уголь, медеплавильные заводы. Мышьяк используется при производстве полупроводников, стекла, красителей, инсектицидов, фунгицидов и т.д.

    ;font-family:"Times New Roman"">Нормальный уровень содержания мышьяка в продуктах питания не должен превышать 1 мг/кг. Так, например, фоновое содержание мышьяка (мг/кг): в овощах и фруктах 0,01–0,2; в зерновых 0,006–1,2; в говядине 0,005–0,05; в печени 2,0; яйцах 0,003–0,03.

    ;font-family:"Times New Roman"">Повышенное содержание мышьяка отмечается в рыбе и других гидробионтах, в частности в ракообразных и моллюсках. По данным ФАО/ВОЗ, в организм человека с суточным рационом поступает в среднем 0,05 – 0,45мг мышьяка. ДСД – 0,05 мг/кг массы тела. В зависимости от дозы мышьяк может вызывать острое и хроническое отравление. Разовая доза мышьяка 30 мг – смертельна для человека. Механизм токсического действия мышьяка связан с блокированием SH – групп белков и ферментов, выполняющих в организме самые разнообразные функции.

    ;font-family:"Times New Roman"">1.2.6 Медь

    ;font-family:"Times New Roman"">Медь ;font-family:"Times New Roman"">. ;font-family:"Times New Roman""> Содержание в земной коре составляет 4,5 мг/кг, морской воде – 1–25 мкг/кг, в организме взрослого человека – около 100 мг/кг.

    ;font-family:"Times New Roman";background:#ffffff">Медь является жизненно важным элементом, который входит в состав многих витаминов, гормонов, ферментов, дыхательных пигментов, участвует в процессах обмена веществ, в тканевом дыхании и т.д. Медь имеет большое значение для поддержания нормальной структуры костей, хрящей, сухожилий (коллаген), эластичности стенок кровеносных сосудов, легочных альвеол, кожи (эластин). Медь входит в состав миелиновых оболочек нервов. В организме взрослого человека половина от общего количества меди содержится в мышцах и костях и 10% ;font-family:"Times New Roman"">– ;font-family:"Times New Roman";background:#ffffff"> в печени.

    ;font-family:"Times New Roman";color:#000000;background:#ffffff">Некоторые соединения меди могут быть токсичны при превышении ПДК в пище и воде. Содержание меди в питьевой воде не должно превышать 2 мг/л (средняя величина за период из 14 суток), однако недостаток меди в питьевой воде также нежелателен.

    ;font-family:"Times New Roman"">Содержание меди в пищевых продуктах составляет, мг/кг: печень животных – 30-40, морепродукты – 4 – 8, орехи – 5– 12, мука – 5– 8, зерновые – 2– 8.

    ;font-family:"Times New Roman"">Медь, в отличие от ртути и мышьяка, принимает активное участие в процессах жизнедеятельности, входя в состав ряда ферментных систем. Суточная потребность - 0,9 мг. Дефицит меди приводит к анемии, недостаточности роста, ряду других заболеваний, в отдельных случаях – к смертельному исходу.

    ;font-family:"Times New Roman"">В организме присутствуют механизмы биотрансформации меди. При длительном воздействии высоких доз меди наступает «поломка» механизмов адаптации, переходящая в интоксикацию и специфическое заболевание. В этой связи является актуальной проблема охраны окружающей среды и пищевой продукции от загрязнения медью и ее соединениями. Основная опасность исходит от промышленных выбросов, передозировки инсектицидами, другими токсичными солями меди, потребления напитков, пищевых продуктов, соприкасающихся в процессе производства с медными деталями оборудования или медной тары.

    ;font-family:"Times New Roman"">1.2.7 Цинк

    ;font-family:"Times New Roman"">Цинк. Содержится в земной коре в количестве 65 мг/кг, морской воде – 9–21 мкг/кг, организме взрослого человека – 1,4–2,3 г/кг.

    ;font-family:"Times New Roman"">Цинк как кофактор входит в состав около 80 ферментов, участвуя тем самым в многочисленных реакциях обмена веществ. Типичными симптомами недостаточности цинка являются замедление роста у детей, половой инфантилизм у подростков, нарушения вкуса (гипогезия) и обоняния (гипосмия) и др.

    ;font-family:"Times New Roman"">Суточная потребность в цинке взрослого человека составляет 15 мг, при беременности и лактации – 20–25 мг. Цинк, содержащийся в растительных продуктах, менее доступен для организма, поскольку фитин растений и овощей связывает цинк (10% усвояемости). Из продуктов животного происхождения цинк усваивается на 40%. Содержание цинка в пищевых продуктах составляет, мг/кг: мясо – 20–40, рыбопродукты – 15–30, устрицы – 60–1000, яйца – 15–20, фрукты и овощи – 5, картофель, морковь – около 10, орехи, зерновые – 25–30, мука высшего сорта – 5–8, молоко – 2–6 мг/л. В суточном рационе взрослого человека содержание цинка составляет 13–25 мг. Цинк и его соединения малотоксичны. Содержание цинка в воде в концентрации 40 мг/л безвредно для человека.

    ;font-family:"Times New Roman"">Вместе с тем возможны случаи интоксикации при нарушении использования пестицидов, небрежного терапевтического применения препаратов цинка. Признаками интоксикации являются тошнота, рвота, боль в животе, диарея. Отмечено, что цинк в присутствии сопутствующих мышьяка, кадмия, марганца, свинца в воздухе на цинковых предприятиях вызывает у рабочих «металлургическую» лихорадку.

    ;font-family:"Times New Roman"">Известны случаи отравлений пищей или напитками, хранившимися в железной оцинкованной посуде. Такие продукты содержали 200–600 мг/кг и более цинка. В этой связи приготовление и хранение пищевых продуктов в оцинкованной посуде запрещено. ПДК цинка в питьевой воде – 5 мг/л, для водоемов рыбохозяйственного назначения – 0,01 мг/л.

    ;font-family:"Times New Roman"">1.2.8 Олово

    ;font-family:"Times New Roman"">Необходимость олова для организма человека не доказана. Вместе с тем пищевые продукты содержат этот элемент до 1–2 мг/кг, организм взрослого человека – около 17 мг олова, что указывает на возможность его участия в обменных процессах.

    ;font-family:"Times New Roman"">Количество олова в земной коре относительно невелико. При поступлении олова с пищей всасывается около 1%. Олово выводится из организма с мочой и желчью.

    ;font-family:"Times New Roman"">Неорганические соединения олова малотоксичны, органические – более токсичны, находят применение в сельском хозяйстве в качестве фунгицидов, в химической промышленности – как стабилизаторы поливинилхлоридных полимеров. Основным источником загрязнения пищевых продуктов оловом являются консервные банки, фляги, железные и медные кухонные котлы, другая тара и оборудование, которые изготавливаются с применением лужения и гальванизации. Активность перехода олова в пищевой продукт возрастает при температуре хранения выше 20ºС, высоком содержании в продукте органических кислот, нитратов и окислителей, которые усиливают растворимость олова.

    ;font-family:"Times New Roman"">Опасность отравления оловом увеличивается при постоянном присутствии его спутника – свинца. Не исключено взаимодействие олова с отдельными веществами пищи и образование более токсичных органических соединений. Повышенная концентрация олова в продуктах придает им неприятный металлический привкус, изменяет цвет. Имеются данные, что токсичная доза олова при его однократном поступлении – 5–7 мг/кг массы тела, т.е. 300–500 мг. Отравление оловом может вызвать признаки острого гастрита (тошнота, рвота и др.), отрицательно влияет на активность пищеварительных ферментов.

    ;font-family:"Times New Roman"">Действенной мерой предупреждения загрязнения пищи оловом является покрытие внутренней поверхности тары и оборудования стойким, гигиенически безопасным лаком или полимерным материалом, соблюдение сроков хранения баночных консервов, особенно продуктов детского питания, использование для некоторых консервов (в зависимости от рецептуры и физико–химических свойств) стеклянной тары.

    ;font-family:"Times New Roman"">1.2.9 Железо

    ;font-family:"Times New Roman"">Железо занимает четвертое место среди наиболее распространенных в земной коре элементов (5% земной коры по массе).

    ;font-family:"Times New Roman"">Этот элемент необходим для жизнедеятельности как растительного, так и животного организма. У растений дефицит железа проявляется в желтизне листьев и называется хлорозом, у человека вызывает железодефицитную анемию, поскольку двухвалентное железо – кофактор в гемсодержащих ферментах, участвует в образовании гемоглобина. Железо выполняет целый ряд других жизненно важных функций: перенос кислорода, образование эритроцитов, обеспечивает активность негемовых ферментов – альдолазы, триптофаноксигеназы и т.д.

    ;font-family:"Times New Roman"">В организме взрослого человека содержится около 4,5 г железа. Содержание железа в пищевых продуктах колеблется в пределах 0,07–4 мг/100г. Основным источником железа в питании являются печень, почки, бобовые культуры (6–20 мг/100 г). потребность взрослого человека в железе составляет около 14 мг/сут, у женщин в период беременности и лактации она возрастает.

    ;font-family:"Times New Roman"">Железо из мясных продуктов усваивается организмом на 30%, из растений – 10%. Последнее объясняется тем, что растительные продукты содержат фосфаты и фитин, которые образуют с железом труднорастворимые соли, что препятствует его усвояемости. Чай также снижает усвояемость железа в результате связывания его с дубильными веществами в труднорастворимый комплекс .

    ;font-family:"Times New Roman"">Несмотря на активное участие железа в обмене веществ, этот элемент может оказывать токсическое действие при поступлении в организм в больших количествах. Так, у детей после случайного приема 0,5 г железа или 2,5 г сульфата железа наблюдали состояние шока. Широкое промышленное применение железа, распространение его в окружающей среде повышает вероятность хронической интоксикации. Загрязнение пищевых продуктов железом может происходить через сырье, при контакте с металлическим оборудованием и тарой, что определяет соответствующие меры профилактики.

    ;font-family:"Times New Roman"">
    2. Классификация и методы определения тяжёлых металлов в пищевых продуктах

    ;font-family:"Times New Roman"">2.1 Понятие и методы качественного и количественного анализа

    ;font-family:"Times New Roman"">Качественный и количественный анализ являются предметом аналитической химии. Аналитическая химия занимается исследованием экспериментальных методов определения состава веществ. Определение состава веществ включает выявление природы компонентов, из которых состоит исследуемое вещество, и установление количественных соотношений этих компонентов.

    ;font-family:"Times New Roman"">Сначала устанавливают качественный состав исследуемого объекта, т.е. решают вопрос, из чего он состоит, а затем приступают к определению количественного состава, т.е. узнают, в каких количественных соотношениях обнаруженные составные части находятся в объекте исследования.

    ;font-family:"Times New Roman"">2.1.1 Качественный анализ

    ;font-family:"Times New Roman"">Качественный анализ вещества можно проводить химическими, физическими, физико–химическими методами.

    ;font-family:"Times New Roman"">Химические методы анализа ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">основаны на применении характерных химических реакций для установления состава анализируемого вещества.

    ;font-family:"Times New Roman"">Химический анализ вещества проводят двумя способами: «сухим путем» или «мокрым путем». Анализ сухим путем – это химические реакции, происходящие с веществами при накаливании, сплавлении и окрашивании пламени.

    ;font-family:"Times New Roman"">Анализ мокрым способом – это химические реакции, протекающие в растворах электролитов. Анализируемое вещество предварительно растворяют в воде или других растворителях. В зависимости от массы или объема взятого для анализа вещества, от применяемой техники различают макро–, полумикро– и микрометоды.

    ;font-family:"Times New Roman"">Макрометод. Для проведения анализа берут 1–2 мл раствора, содержащего не менее 0,1 г вещества, и добавляют не менее 1 мл раствора реактива. Реакции проводят в пробирке, осадок отделяют фильтрованием. Осадок на фильтре промывают от примесей.

    ;font-family:"Times New Roman"">Полумикрометод. Для анализа берут в 10–20 раз меньше вещества (до 0,01 г). Так как в этом методе работают с малыми количествами вещества, то пользуются микропробирками, часовыми или предметными стеклами. Для отделения осадка от раствора применяют центрифугирование.

    ;font-family:"Times New Roman"">Микрометод. При выполнении анализа данным методом берут одну–две капли раствора, а сухого вещества – в пределах 0,001г. Характерные реакции проводят на часовом стекле или фарфоровой пластинке.

    ;font-family:"Times New Roman"">При проведении анализа пользуются следующими операциями: нагревание и выпаривание, осаждение, центрифугирование, проверка полноты осаждения, отделение раствора (центрифуга) от осадка, промывание и растворение осадка.

    ;font-family:"Times New Roman"">Нагревание растворов можно вести непосредственно пламенем газовой горелки, на асбестовой сетке или водяной бане. Небольшое количество раствора нагревают до температуры, не превышающей 100°С, на водяной бане, вода в которой должна кипеть равномерно.

    ;font-family:"Times New Roman"">Для концентрирования растворов применяют водяную баню. Выпаривание раствора до сухого остатка проводят в фарфоровых чашках или тиглях, нагревая их на асбестовой сетке. Если сухой остаток после выпаривания необходимо прокалить для удаления летучих солей, то тигель ставят на фарфоровый треугольник и нагревают пламенем газовой горелки.

    ;font-family:"Times New Roman"">Осаждение. Реакцию осаждения проводят в конических колбах или цилиндрической пробирках. В исследуемый раствор приливают пипеткой реактив–осадитель. Осадитель берут в избытке. Смесь тщательно перемешивают стеклянной палочкой и потирают о внутренние стенки пробирки, это ускоряет процесс образования осадка. Осаждение часто ведут из горячих растворов.

    ;font-family:"Times New Roman"">Центрифугирование. Осадок отделяют от раствора центрифугированием, используя ручную или электрическую центрифугу. Пробирку с раствором и осадком помещают в гильзу. Центрифуга должна быть загружена равномерно. При быстром вращении центробежная сила отбрасывает частицы осадка на дно и уплотняет его, а раствор (центрифугат) становится прозрачным. Время вращения составляет от 30 с до нескольких минут.

    ;font-family:"Times New Roman"">Проверка полноты осаждения. Пробирку осторожно вынимают из центрифуги и добавляют по стенке 1–2 капли реактива–осадителя к прозрачному раствору. Если раствор не мутнеет, значит осаждение полное. Если же наблюдается помутнение раствора, то в пробирку еще добавляют осадитель, содержимое перемешивают, нагревают и вновь центрифугируют, затем повторяют проверку полноты осаждения.

    ;font-family:"Times New Roman"">Отделение раствора (центрифугата) от осадка. Убедившись в полноте осаждения, отделяют раствор от осадка. Раствор от осадка отделяют капельной пипеткой. Пипетку закрывают указательным пальцем и осторожно вынимают из пробирки. Если отобранный раствор необходим для анализа, то его переносят в чистую пробирку. Для полного отделения операцию повторяют несколько раз. При центрифугировании осадок может плотно осесть на дно пробирки, тогда раствор отделяют декантацией (осторожно сливают).

    ;font-family:"Times New Roman"">Промывание осадка ;font-family:"Times New Roman"">. ;font-family:"Times New Roman""> Осадок (если он исследуется) необходимо хорошо отмыть; для этого приливают промывную жидкость, чаще всего дистиллированную воду. Содержимое тщательно перемешивают стеклянной палочкой и центрифугируют, затем промывную жидкость отделяют. Иногда в работе эту операцию повторяют 2–3 раза.

    ;font-family:"Times New Roman"">Растворение осадка. Для растворения осадка в пробирку добавляют растворитель, помешивая стеклянной палочкой. Нередко растворение осадка ведут при нагревании на водяной бане.

    ;font-family:"Times New Roman"">2.3 Количественный анализ

    ;font-family:"Times New Roman"">Для определения количественного состава вещества или продукта используются реакции нейтрализации, осаждения, окисления – восстановления, комплексообразования. Количество вещества можно определить по его массе или объему раствора, затраченного на взаимодействие с ним, а также по показателю преломления раствора, его электрической проводимости или интенсивности окраски и т.п.

    ;font-family:"Times New Roman"">По количеству взятого для исследования вещества аналитические методы количественного анализа классифицируются следующим образом: макроанализ – 1–10 г твердого вещества, 10–100 мл анализируемого раствора; полумикроанализ – 0,05–0,5 твердого вещества, 1–10 мл анализируемого раствора; микроанализ – 0,001–1–10– ;font-family:"Times New Roman";vertical-align:super">4 ;font-family:"Times New Roman""> г твердого вещества, 0,1–1 ;font-family:"Times New Roman";vertical-align:sub">* ;font-family:"Times New Roman"">10– ;font-family:"Times New Roman";vertical-align:super">4 ;font-family:"Times New Roman""> мл анализируемого ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">раствора. В товароведной практике часто пользуются гравиметрическим (весовым) и титриметрическим (объемным) методами.

    ;font-family:"Times New Roman"">Гравиметрический (весовой) анализ – один из методов количественного анализа, который позволяет определять состав анализируемого вещества путем измерения массы. Измерение массы (взвешивание) выполняется на аналитических весах с точностью 0,0002 г. Этот метод часто используется в пищевых лабораториях для определения влажности, зольности, содержания отдельных элементов или соединений. Анализ может быть выполнен одним из следующих способов.

    ;font-family:"Times New Roman"">Определяемую составную часть количественно (полностью, насколько это возможно) выделяют из исследуемого вещества и взвешивают. Так определяют зольность продуктов. Взвешенный на аналитических весах исходный продукт (навеску) сжигают, полученную золу доводят до постоянной массы (прокаливают до тех пор, пока не перестанет изменяться масса) и взвешивают.

    ;font-family:"Times New Roman"">Зольность продукта х (%) рассчитывают по формуле

    ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">, ;font-family:"Times New Roman"">(1)

    ;font-family:"Times New Roman"">где В – масса прокаленной золы, г;

    ;font-family:"Times New Roman""> А – исходная навеска продукта, г.

    ;font-family:"Times New Roman"">Из навески исходного вещества полностью удаляют определяемую составную часть и остаток взвешивают. Так определяют влажность продуктов, при этом навеску исходного вещества высушивают в сушильном шкафу до постоянной массы.

    ;font-family:"Times New Roman"">Влажность продукта х (%) рассчитывают по формуле

    ;font-family:"Times New Roman"">, (2)

    ;font-family:"Times New Roman"">где А – исходная навеска продукта, г;

    ;font-family:"Times New Roman""> В – масса навески после высушивания, г.

    ;font-family:"Times New Roman"">Объемный анализ – метод количественного анализа, где искомое вещество определяют по объему реактива с точно известной концентрацией, затраченному на реакцию с этим веществом.

    ;font-family:"Times New Roman"">При определении объемным методом к известному объему раствора определяемого вещества малыми порциями (по каплям) добавляют реактив с точно известной концентрацией до тех пор, пока его количество не будет эквивалентно количеству определяемого вещества. Раствор реактива с точно известной концентрацией называется титрованным, рабочим или стандартным раствором.

    ;font-family:"Times New Roman"">Процесс медленного прибавления титрованного раствора к раствору определяемого вещества называется титрованием. Момент, когда количество титрованного раствора будет эквивалентно количеству определяемого вещества, называется точкой эквивалентности или теоретической точкой конца титрования. Для определения точки эквивалентности пользуются индикаторами, которые вблизи ее претерпевают видимые изменения, выражающиеся в изменении цвета раствора, появлении помутнения или выпадении осадка.

    ;font-family:"Times New Roman"">Важнейшие условия для правильного проведения объемно–аналитических определений:

    ;font-family:"Times New Roman"">1) возможность точного измерения объемов растворов;

    ;font-family:"Times New Roman"">2) наличие стандартных растворов с точно известной концентрацией;

    ;font-family:"Times New Roman"">3) возможность точного определения момента окончания реакции (правильный выбор индикатора).

    ;font-family:"Times New Roman"">В зависимости от того, на какой реакции основано определение, различают следующие разновидности объемного метода:

    1. ;font-family:"Times New Roman"">метод нейтрализации
    2. ;font-family:"Times New Roman"">метод окисления – восстановления
    3. ;font-family:"Times New Roman"">метод осаждения и комплексообразования.

    ;font-family:"Times New Roman"">В основе метода нейтрализации лежит реакция взаимодействия ионов Н ;font-family:"Times New Roman";vertical-align:super">+ ;font-family:"Times New Roman""> и ОН ;font-family:"Times New Roman";vertical-align:super">– ;font-family:"Times New Roman"">. Метод применяется для определения кислот, оснований и солей (которые реагируют с кислотами или основаниями) в растворе. Для определения кислот используют титрованные растворы щелочей КОН или NаОН, для определения оснований – растворы кислот НС1, Н ;font-family:"Times New Roman";vertical-align:sub">2 ;font-family:"Times New Roman"">SO ;font-family:"Times New Roman";vertical-align:sub">4 ;font-family:"Times New Roman"">.

    ;font-family:"Times New Roman"">Для определения содержания, например, кислоты в растворе точно отмеренный пипеткой объем раствора кислоты в присутствии индикатора титруют раствором щелочи точно известной концентрации. Точку эквивалентности определяют по изменению цвета индикатора. По объему щелочи, израсходованной на титрование, вычисляют содержание кислоты в растворе.

    ;font-family:"Times New Roman"">Метод окисления – восстановления основан на окислительно-восстановительных реакциях, происходящих между стандартным раствором и определяемым веществом. Если стандартный раствор содержит окислитель (восстановитель), то определяемое вещество должно содержать соответственно восстановитель (окислитель). Метод окисления-восстановления подразделяется, в зависимости от используемого стандартного раствора на метод перманганатометрии, метод иодометрии и др.

    ;font-family:"Times New Roman"">В основе метода осаждения лежат реакции, сопровождающиеся выпадением осадка. В отличие от гравиметрического метода обработку осадка здесь не производят, массу исследуемого вещества определяют по объему реактива, израсходованному на реакцию осаждения .

    ;font-family:"Times New Roman"">
    ;font-family:"Times New Roman"">3 Классификация и характеристика методов исследования пищевых продуктов

    ;font-family:"Times New Roman"">При оценке показателей качества пищевых продуктов, как правило, используют органолептический и лабораторный методы.

    ;font-family:"Times New Roman"">Лабораторные методы широко применяются для установления химического состава, доброкачественности, физических и других свойств пищевых продуктов, а также для изучения процессов, происходящих в продуктах при технологической обработке и во время хранения. В зависимости от способов получения результатов эти методы подразделяют на:

    1. ;font-family:"Times New Roman"">физические;
    2. ;font-family:"Times New Roman"">физико-химические;
    3. ;font-family:"Times New Roman"">химические;
    4. ;font-family:"Times New Roman"">биохимические;
    5. ;font-family:"Times New Roman"">микробиологические;
    6. ;font-family:"Times New Roman"">физиологические;
    7. ;font-family:"Times New Roman"">технологические.

    ;font-family:"Times New Roman"">Осуществляют лабораторные методы с помощью приборов и химических реактивов, поэтому полученные результаты выражают конкретными величинами, которые отличаются большой точностью и выражаются в количественных показателях (в %, г и др.).

    ;font-family:"Times New Roman"">3.1 Физические и физико-химические методы

    ;font-family:"Times New Roman"">Физические и физико-химические методы характеризуются быстротой выполнения анализа, высокой степенью точности и малым количеством продукта, необходимого для анализа. Физические методы основаны на использовании физических свойств объектов исследования. Из физических методов в исследованиях качества продуктов чаще всего применяют поляриметрию, рефрактометрию и реологические методы. Физическими методами определяют относительную плотность продукта, температуры плавления и застывания продуктов, оптические показатели и др.

    ;font-family:"Times New Roman"">Поляриметрия ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">основана на способности некоторых оптически активных веществ вращать плотность поляризованного луча, проходящего через их растворы, в приборе (поляриметре, сахариметре). Поляриметрию обычно используют для установления вида сахара (сахарозы, глюкозы, мальтозы, фруктозы) и определения его концентрации в растворе.

    ;font-family:"Times New Roman"">С помощью рефрактометрии определяют содержание в продукте жира, влаги, спирта, сахара и других веществ ;font-family:"Times New Roman"">, ;font-family:"Times New Roman"">определяют качество жиров. Этот метод основан на измерении показателя преломления света в рефрактометре при прохождении его через жидкий продукт.

    ;font-family:"Times New Roman"">Реологические ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">методы применяют для изучения структурно–механических свойств пищевых продуктов. Эти свойства проявляются при механическом воздействии на продукты и характеризуют их поведение под действием, приложенной извне механической энергии. С помощью реологических методов определяют упруговязкие характеристики теста, вязкость мясного фарша, прочность крахмального клейстера, консистенцию маргарина и т.д.

    ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">Физико-химические методы основаны на изучении зависимости между физическими свойствами и составом анализируемого вещества. Из физико-химических методов для исследования качества продуктов пользуются хроматографическим, потенциометрическим, фотометрическим, люминесцентным, кондуктометрическим, нефелометрическим методами, спектроскопией и др.

    ;font-family:"Times New Roman"">С помощью хроматографии изучают содержание и изменение химических веществ в процессе производства и хранения пищевых продуктов, природу и количество ароматических и красящих веществ, аминокислотный состав белков, жирнокислотный состав, содержание витаминов, органических кислот, сахаров, наличие ядохимикатов и фальсификацию пищевых продуктов.

    ;font-family:"Times New Roman"">Хроматографический метод отличается высокой чувствительностью. Принцип хроматографического анализа основан на том, что вещества, близкие по своим свойствам, обладают различной адсорбционной способностью, поэтому при прохождении через сорбент они разделяются.

    ;font-family:"Times New Roman"">Потенциометрический ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">метод основан на определении потенциала между электродом, насыщенным водородом, и жидкостью, имеющей водородные ионы. Этот метод широко используется для измерения рН.

    ;font-family:"Times New Roman"">рН – это отрицательный десятичный логарифм концентрации водородных ионов. В нейтральной среде рН равно 7,0, в кислой – меньше 7, в щелочной – больше 7.

    ;font-family:"Times New Roman"">Концентрация свободных ионов водорода характеризует качество большинства пищевых продуктов. Этот показатель можно применять для контроля биохимических процессов, происходящих при переработке и хранении пищевых продуктов, с активной кислотностью среды теснейшим образом связана жизнедеятельность микроорганизмов, по величине рН можно судить о свежести мяса и некоторых других продуктов.

    ;font-family:"Times New Roman"">Измерение рН можно осуществить на приборах, которые называются рН–метром или потенциометром.

    ;font-family:"Times New Roman""> Фотометрические методы основаны на взаимодействии лучистой энергии с анализируемым веществом. Они позволяют определить компоненты химического состава пищевых продуктов и судить об их свежести, доброкачественности. К этим методам относятся фотоколориметрия, спектрофотометрия, люминесцентный анализ и др.

    ;font-family:"Times New Roman"">Фотоколориметрический и спектрофотометрический методы основаны на избирательном поглощении света анализируемым веществом.

    ;font-family:"Times New Roman"">Фотоколориметрические методы определения концентрации вещества основаны на сравнении поглощения или пропускания света стандартным и исследуемым окрашенным раствором, причем степень поглощения регистрируется специальным оптическим прибором – колориметром с фотоэлементами (фотоколориметром).

    ;font-family:"Times New Roman"">Спектрофотометрия основана на измерении оптической плотности и процента пропускания световых потоков определенной длины волны через исследуемый раствор и эталон на спектрофотометре ;font-family:"Times New Roman"">.

    ;font-family:"Times New Roman"">Спектрофотометры применимы для анализа как одного вещества, так и систем, содержащих несколько компонентов. Кроме того, они позволяют работать как с окрашенными растворами, так и с бесцветными.

    ;font-family:"Times New Roman"">Фотоколориметрическим и спектрофотометрическим методами можно установить содержание, кофеина в чае и кофе, теобромина в какао, красящих веществ в плодах и овощах, в виноградных винах, содержание аммиака, нитритов и нитратов в мясных продуктах, свинца – в консервах, некоторых витаминов, цветность сахара и пищевых жиров и т. д.

    ;font-family:"Times New Roman"">Люминесцентный ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">анализ позволяет установить природу и состав исследуемого продукта. Этот метод основан на способности многих веществ после облучения их ультрафиолетовыми лучами испускать в темноте видимый свет различных оттенков. ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">Белки, жиры и углеводы дают люминесцентное свечение определенных оттенков, которое меняется при изменении их состава. Так, свежая рыба при облучении дает голубой свет, если же она начала портиться, то свет становится фиолетовым ;font-family:"Times New Roman"">.

    ;font-family:"Times New Roman"">Люминесцентным методом можно обнаружить примесь маргарина в животных жирах, примесь плодово-ягодных вин в виноградных винах. Его используют для выяснения характера заболеваний плодов и овощей. По интенсивности люминесценции определяют порчу мяса, рыбы и овощей, наличие пестицидов и канцерогенных веществ в продуктах.
    Кондуктометрический метод основан на измерении электропроводности материалов. С помощью этого метода определяют титруемую кислотность тёмноокрашенных продуктов (виноградных вин, плодово-ягодных соков), влажность сыпучих продуктов (зерно, мука, сахар-песок, кофе и др).

    ;font-family:"Times New Roman"">Нефелометрическим методом на основе определения количества света, рассеянного частицами суспензии, устанавливают степень мутности растворов прибором нефелометр.

    ;font-family:"Times New Roman"">Спектроскопия используется в товароведных исследованиях для количественного и качественного анализов пищевых продуктов. Спектральный метод анализа основан на изучении спектров паров исследуемых веществ. С помощью этого метода можно определять состав и количество макро– и микроэлементов, содержание в пище витаминов А, К, В1, В2, В6, никотиновой кислоты, каротина и др.

    ;font-family:"Times New Roman"">3.2 Химические и биохимические методы

    ;font-family:"Times New Roman"">Химические и биохимические методы используют для установления химического состава пищевых продуктов, количественного и качественного определения в продуктах различных компонентов. С их помощью можно судить об изменениях, происходящих в пищевых продуктах при производстве, транспортировании и хранении. Химические и биохимические методы – это методы аналитической, органической и биологической химии, основанные на химических свойствах веществ, их способности принимать участие в какой–либо специфической химической реакции с определенными реактивами. Эти методы проводятся с использованием приемов весового и объемного анализов.

    ;font-family:"Times New Roman"">В товароведной практике химические методы широко используют для установления соответствия показателей качества пищевых продуктов требованиям стандартов. Определение сахаров основано, например, на их способности окисляться в щелочной среде солями тяжелых металлов. Кислотность продуктов устанавливают титрованием раствором едкой щелочи в присутствии индикатора, а в окрашенных растворах с помощью рН–метра.

    ;font-family:"Times New Roman"">С помощью биохимических методов изучают интенсивность дыхания плодов и овощей, изменение сахаро- и газообразующей способности муки, процессы гидролиза и автолиза при созревании мяса и др. Так, интенсивность дыхания плодов и овощей определяют по количеству поглощенного кислорода и выделенного углекислого газа.

    ;font-family:"Times New Roman"">3.3 Микробиологические методы

    ;font-family:"Times New Roman"">Микробиологические методы служат для установления степени обремененности пищевых продуктов микроорганизмами. При этом определяют как общее их содержание, так и вид микробов, наличие в продуктах бактерий, вызывающих пищевые отравления и заболевания. При проведении микробиологических методов широко применяют микрокопирование.

    ;font-family:"Times New Roman"">Микробиологическими методами можно также определить содержание в пищевых продуктах витаминов, биологически активных веществ и др.

    ;font-family:"Times New Roman"">3.4 Физиологические методы

    ;font-family:"Times New Roman"">Физиологические методы анализа проводят главным образом на подопытных животных и птицах. Физиологические методы исследования качества пищевых продуктов применяют для определения усвояемости пищи, реальной энергетической ценности и т.д .

    ;font-family:"Times New Roman"">3.5 Технологические методы

    ;font-family:"Times New Roman"">Технологическими методами пользуются для установления степени пригодности продукта к промышленной переработке, а также для определения свойств продуктов, проявляющихся в процессе их употребления. Так, при изучении хлебопекарных свойств муки обязательно проводят пробную выпечку хлеба и определяют в нем объемный выход, цвет и характер корки, пористость, цвет, эластичность, липкость мякиша и другие показатели.

    ;font-family:"Times New Roman"">
    ;font-family:"Times New Roman"">4 Методы определения тяжёлых металлов в пищевых продуктах

    ;font-family:"Times New Roman"">4.1 Метод определения мышьяка

    ;font-family:"Times New Roman"">Мышьяк – высокотоксичный кумулятивный протоплазматический яд, поражающий нервную систему. Смертельная доза 60—200 мг. Хроническая интоксикация наблюдается при потреблении 1—5 мг в день. ФАО/ВОЗ установлена недельная безопасная доза 50 мкг/кг.

    ;font-family:"Times New Roman"">Токсическое действие соединений мышьяка обусловлено блокированием сульфгидрильных групп ферментов и других биологически активных веществ.

    ;font-family:"Times New Roman"">Определить мышьяк в пределах 1–50 мг/л можно с помощью колориметрических методов анализа на основе диэтилдитиокарбоната серебра. Удобным является метод атомно-абсорбционной спектроскопии. Он основан на определении арсина, полученного при восстановлении соединений мышьяка. Имеющиеся в продаже приборы для выделения арсина используются в сочетании со стандартным оборудованием. При анализе мышьяка рекомендуется использовать пламя закись азота–ацетилена. Из-за молекулярной абсорбции газов пламени могут возникать помехи в верхнем диапазоне ультрафиолетовой части спектра, где находятся наиболее чувствительные линии мышьяка. Эти помехи устраняются при корректировке фона.

    ;font-family:"Times New Roman"">Для определения микроколичества мышьяка с успехом использовался нейтронно-активационный анализ. Это позволило провести точные определения мышьяка в очень малых образцах, например в одном волоске.

    ;font-family:"Times New Roman"">Часто бывает необходимо установить тип химического соединения мышьяка. Для отличия в водных растворов трехвалентного мышьяка от пятивалентного использовали инверсионную полярографию. Для разделения органических соединений мышьяка от неорганических использовался метод газожидкостной хроматографии.

    ;font-family:"Times New Roman"">Арбитражный метод – колориметрия с диэтилдитиокарбонатом серебра после отгонки мышьяка из гидролизата (или раствора золы) в виде гидрида или трихлорида мышьяка. Атомно-абсорбционное определение возможно только после предварительного концентрирования в виде гидрида AsH3 и использования графитовой кюветы.

    ;font-family:"Times New Roman"">4.2 Методы определения кадмия

    ;font-family:"Times New Roman"">Кадмий — высокотоксичный кумулятивный яд, блокирующий, работу ряда ферментов; поражает почки и печень. ФАО/ВОЗ установлена недельная безопасная доза 6,7—8,3 мкг/кг. В устрицах и печени животных и рыб может накапливаться до значительных величин; в растительных продуктах зависит от дозы удобрения суперфосфатом.

    ;font-family:"Times New Roman"">Токсическое действие соединений кадмия на организм вызывается тем, что ионы этих металлов вступают во взаимодействие с сульфгидрильными SH–группами белков, ферментов и аминокислот. При взаимодействии ионов металлов с SH–группами образуются слабодиссоциирующие и, как правило, нерастворимые соединения. Поэтому блокирование сульфгидрильных групп приводит к подавлению активности ферментов и свертыванию белков.

    ;font-family:"Times New Roman"">В Таблице 2 приведено среднее содержание и ПДК С ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">d ;font-family:"Times New Roman""> в пищевых продуктах.

    ;font-family:"Times New Roman"">Таблица 2. Среднее содержание и ПДК С ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">d ;font-family:"Times New Roman""> в пищевых продуктах

    ">Пищевые продукты

    ">и сырье

    ;font-family:"Times New Roman"">Среднее содержание, мг/кг

    ;font-family:"Times New Roman"">ПДК, мг/кг

    ">Зерновые

    ;font-family:"Times New Roman"">0,03

    ;font-family:"Times New Roman"">0,1

    ;font-family:"Times New Roman"">Зернобобовые

    ;font-family:"Times New Roman"">0,03

    ;font-family:"Times New Roman"">0,1

    ;font-family:"Times New Roman"">Крупы

    ;font-family:"Times New Roman"">0,018

    ;font-family:"Times New Roman"">0,1

    ">Хлеб

    ;font-family:"Times New Roman"">0,023

    ;font-family:"Times New Roman"">0,05

    ">Бараночные изделия

    ;font-family:"Times New Roman"">0,026

    ;font-family:"Times New Roman"">0,1

    ">Отруби пшеничные

    ;font-family:"Times New Roman"">0,07

    ;font-family:"Times New Roman"">0,1

    ">Соль поваренная

    ;font-family:"Times New Roman"">0,05

    ;font-family:"Times New Roman"">0,1

    ">Сахар(песок)

    ;font-family:"Times New Roman"">0,004

    ;font-family:"Times New Roman"">0,05

    ">Желатин

    ;font-family:"Times New Roman"">0,01

    ;font-family:"Times New Roman"">0,03

    ">Орехи (ядро)

    ;font-family:"Times New Roman"">0,03

    ;font-family:"Times New Roman"">0,1

    ">Конфеты

    ;font-family:"Times New Roman"">0,045

    ;font-family:"Times New Roman"">0,1

    ">Какао–порошок и шоколад

    ;font-family:"Times New Roman"">0,1

    ;font-family:"Times New Roman"">0,5

    ">Печенье

    ;font-family:"Times New Roman"">0,03

    ;font-family:"Times New Roman"">0,1

    ">Молочные изделия

    ">Молоко, кисломолочные изделия

    ;font-family:"Times New Roman"">0,02

    ;font-family:"Times New Roman"">0,03

    ">Молоко сгущенное

    ">консервированное

    ;font-family:"Times New Roman"">0,025

    ;font-family:"Times New Roman"">0,1

    ">Молоко сухое

    ;font-family:"Times New Roman"">0,025

    ;font-family:"Times New Roman"">0,03

    ">Сыры, творог

    ;font-family:"Times New Roman"">0,1

    ;font-family:"Times New Roman"">0,2

    ">Масло сливочное

    ;font-family:"Times New Roman"">0,01

    ;font-family:"Times New Roman"">0,03

    ">Растительные продукты

    ">Масло растительное

    ;font-family:"Times New Roman"">0,025

    ;font-family:"Times New Roman"">0,05

    ">Маргарины и жиры

    ;font-family:"Times New Roman"">0,03

    ;font-family:"Times New Roman"">0,05

    ">Овощи свежие и свежемороженые

    ;font-family:"Times New Roman"">0,02

    ;font-family:"Times New Roman"">0,03

    ">и сухие

    ;font-family:"Times New Roman"">0,05

    ;font-family:"Times New Roman"">0,1

    ;font-family:"Times New Roman"">Для определения кадмия, как правило, требуется предварительное концентрирование, так как содержание металла в продуктах питания обычно мало. Комитет по аналитическим методам рекомендует проводить кислотную минерализацию серной кислотой с добавлением перекиси водорода. При сухом озолении могут быть потери кадмия, так как при температуре свыше 500ºС он испаряется. Содержание кадмия может быть установлено и путем образования комплексов с тетраметилендитиокарбонат-аммония, а также экстракцией кадмия изобутилметилкетоном.

    ;font-family:"Times New Roman"">Для определения кадмия в пищевых экстрактах может быть также использован колориметрический метод на основе дитизона.

    ;font-family:"Times New Roman"">В настоящее время наиболее широко применяется атомно-абсорбционная спектрофотометрия. Использование воздушно–ацетиленового пламени позволяет получить хорошие результаты, однако пламя должно тщательно контролироваться. Беспламенная атомно-абсорбционная спектрофотометрия позволяет определять кадмий на уровне 5 мкг/кг. Однако из-за химического влияния некоторых соединений, например солей калия, результаты могут быть искажены.

    ;font-family:"Times New Roman"">Есть данные по определению кадмия методом вольтамперометрии с анодным растворением. Результаты хорошо согласуются с данными атомно-абсорбционной спектрометрии. Достаточно надежные и точные данные удается получить с помощью нейтронно-активационного анализа. С использованием нового оборудования и повышением точности стало ясно, что данные, полученные ранее с помощью атомно-абсорбционной спектрофотомерии и менее точной пламенной фотометрии, не являются достоверными. Это объясняется несовершенством современных аналитических методов.

    ;font-family:"Times New Roman"">Определение кадмия в порошковом обезжиренном молоке. Необходимые реактивы. Первичный кислый фосфорнокислый аммоний, 0.5% раствор вес/об. (используется для химической модификации аналита). Примеси следов металлов в модификаторе должны быть удалены комплексообразованием АПДК и экстракцией МИБК.

    ;font-family:"Times New Roman"">Растворяют порошок молока (1.25 г) в деионизованной дистиллированной воде (25 мл) при хорошем перемешивании с использованием магнитной мешалки или ультразвуковой бани. Немного ТRITON Х–100 0.01% об. (1 мл) можно добавить для получения лучших диспергирующих свойств.

    ;font-family:"Times New Roman"">Приготовление градуировочных растворов. Водные стандарты: исходный стандарт 1000 мкг Cd/л в 1 М азотной кислоте. Готовят градуировочный раствор с концентрацией 10 мкг Cd/л разбавлением исходного раствора.

    ;font-family:"Times New Roman"">Процедура градуировки. Методом стандартных добавок с использованием программируемого дозатора образцов. Рекомендуемый объём образца – 10 мкл, объём стандартных добавок – 5 и 10 мкл, 10 мкл модификатора и бланковый раствор до общего для всех растворов объёма 30 мкл.

    ;font-family:"Times New Roman"">Этот метод не рекомендуется для свежего молока или порошков цельных молочных сливок. Для таких образцов или используют кислотное разложение или добавляют кислород на стадии озоления при анализе.

    ;font-family:"Times New Roman"">Так как Cd обычно присутствует в малых количествах, градуировочный раствор Cd должен иметь концентрацию 5 мкг/л или меньше. Для кадмия температура озоления должна быть не больше 750ºС.

    ;font-family:"Times New Roman"">4.3 Методы определения свинца

    ;font-family:"Times New Roman"">Свинец – высокотоксичный кумулятивный яд, поражающий нервную систему, почки. Хроническая интоксикация наступает при потреблении 1–3 мг в сутки. ФАО/ВОЗ установлена общая недельная безопасная доза 50 мкг/кг массы тела. Так как часть свинца поступает с воздухом и водой, с пищей человек может потреблять 300–400 мкг в день.

    ;font-family:"Times New Roman"">В моллюсках содержание свинца может достигать 15 мг/кг. В консервированных (в металлической таре) продуктах, содержащих кислоты, особенно в плодовых и овощных, содержание свинца может увеличиваться в 10 раз и более по сравнению с естественным уровнем.

    ;font-family:"Times New Roman"">Свинец депонируется в основном в скелете (до 90%) в форме труднорастворимого фосфата:

    "> "> (3)

    ;font-family:"Times New Roman"">Используют как сухое озоление с добавкой нитрата магния или алюминия и кальция, так и мокрое – смесью азотной и хлорной кислот, применение серной кислоты не рекомендуется. Для текущих исследований – колориметрия с дитизоном, в который для устранения мешающего влияния цинка и олова добавляют цианид калия. Теряется в заметном количестве в присутствии хлоридов. Озоление веществ, содержащих свинец, проводится при температуре (500–600)º С. Определение проводят согласно ГОСТ 26932–86, ИСО 6633–84.

    ;font-family:"Times New Roman"">4.4 Методы определения ртути

    ;font-family:"Times New Roman"">Ртуть – высокотоксичный, кумулятивный яд, поражающий нервную систему и почки. Наиболее токсичны некоторые органические соединения, особенно метилртуть, составляющая в рыбе от 50 до 90% общей ртути. Установлена недельная безопасная доза общей ртути 5 мкг/кг массы тела, в том числе метилртути 3,3 мкг/кг. В наибольших количествах содержится в рыбе, обычно пропорционально ее возрасту и размеру, и особенно велико ее содержание у хищных рыб. При кулинарной тепловой обработке рыб теряется около 20% ртути.

    ;font-family:"Times New Roman"">Токсическое действие соединений ртути на организм вызывается тем, что ионы этих металлов вступают во взаимодействие с сульфгидрильными SH–группами белков, ферментов и аминокислот. При взаимодействии ионов металлов с SH–группами образуются слабодиссоциирующие и, как правило, нерастворимые соединения. Поэтому блокирование сульфгидрильных групп приводит к подавлению активности ферментов и свертыванию белков.

    ;font-family:"Times New Roman"">Из-за летучести элемента возможны потери даже при хранении и сушке образца. Поэтому рекомендуют только мокрое озоление смесями азотной, серной, иногда хлорной кислот с добавкой перманганата или молибдата при невысоких температурах и в специальной герметичной аппаратуре.

    ;font-family:"Times New Roman"">Определение ртути в пищевых продуктах и других биологических объектах требует точности и высокого мастерства. В настоящие время ртуть определяют тремя основными аналитическими методами: колориметрический, методом пламенной атомно-абсорбционной спектрометрии и методом нейтронно-активационного анализа.

    ;font-family:"Times New Roman"">Колориметрический метод. Этот метод основан на переводе металла, содержащегося в навески, в комплекс с дитизоном, который экстрагируют органическим растворителем и затем колориметрируют. Эти операции длительны; предел обнаружения составляет около 0,05 мг/кг. Для определения требуется большая навеска (5 г) образца.

    ;font-family:"Times New Roman"">Метод пламенной атомно-абсорбционной спектрометрии. Методом пламенной атомно-абсорбционной спектрометрии в настоящие время широко используется для определения ртути. Имеется оборудование, позволяющее приспособить стандартную атомно-абсорбционную спектрометрию для так называемой техники холодного испарения. При этом используются циркуляционные и нециркуляционные методы. В первом случае содержание ртути в образце измеряют по значению мгновенной абсорбции ртути при прохождении ее паров через абсорбционную ячейку. При циркуляционных методах пары ртути накапливаются постепенно до достижения постоянной абсорбции. Для перевода ионов ртути в молекулярную форму используется хлорид олова. Метод применим для растворов, содержащих ртуть в форме, легко поддающейся восстановлению хлоридом олова.

    ;font-family:"Times New Roman"">Для определения ртути используются и другие аналитические методы.

    ;font-family:"Times New Roman"">Нейтронно-активационный анализ, например, характеризуется высокой селективностью и точностью. Он эффективен для определения ртути в небольших навесках при проведении общего анализа пищи.

    ;font-family:"Times New Roman"">Арбитражный метод – атомно-абсорбционный с использованием техники низкотемпературного холодного пара. Для текущих, исследований — колориметрия с йодидом меди. Колориметрия с дитизоном не рекомендуется, так как для большинства продуктов не позволяет определять величины ПДК. Метилртуть определяют методом газожидкостной хроматографии. Также определяют содержание ртути согласно нормативным документам ГОСТ 26927–86.

    ;font-family:"Times New Roman"">4.5 Методы определения цинка

    ;font-family:"Times New Roman"">Цинк – необходимый элемент, участвующий в работе ряда важных ферментов и гормона инсулина. Повышенные количества цинка токсичны. Так, признаки токсичности установлены при длительном потреблений воды с содержанием цинка 0,04 мг/к ;font-family:"Times New Roman"" xml:lang="uk-UA" lang="uk-UA">г ;font-family:"Times New Roman"">. Много содержится в пшеничных отрубях и в устрицах — до 150 мг/кг. При хранении кислых продуктов в оцинкованной таре содержание элемента может увеличиваться в несколько раз.

    ;font-family:"Times New Roman"">Все еще широко применяется дитизон-колориметрический метод для качественного и количественного определения цинка. Окрашенный комплекс экстрагируют органическим растворителем и сравнивают со стандартами аналогично приготовленным раствором цинка. Предел определения составляет 0,7 мг/л.

    ;font-family:"Times New Roman"">Наиболее широко в настоящие время применяется метод атомно-абсорбционный спектрофотомерии. Метод чувствителен, и при этом другие элементы практически не мешают определению.

    ;font-family:"Times New Roman"">Также определяю цинк согласно стандартной методики определения по ГОСТ 26У34–86.

    ;font-family:"Times New Roman"">Средне содержание и ПДК цинка в пищевых продуктах приведены в таблице 3.

    ;font-family:"Times New Roman"">Таблица 3.Среднее содержание и ПДК цинка в пищевых продуктах

    ">Пищевые продукты

    ">и сырье

    ;font-family:"Times New Roman"">Среднее содержание ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">, мг/кг

    ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">ПДК, мг/кг

    ">Зерновые

    ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">23

    ;font-family:"Times New Roman"">50,0

    ;font-family:"Times New Roman"">Зернобобовые

    ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">28

    ;font-family:"Times New Roman"">50,0

    ;font-family:"Times New Roman"">Крупы

    ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">22

    ;font-family:"Times New Roman"">50,0

    ">Хлеб

    ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">10

    ;font-family:"Times New Roman"">25,0

    ">Бараночные изделия

    ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">7 ;font-family:"Times New Roman"">, ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">0

    ;font-family:"Times New Roman"">30,0

    ">Отруби пшеничные

    ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">100

    ;font-family:"Times New Roman"">130,0

    ">Соль поваренная

    ;font-family:"Times New Roman"">6,0

    ;font-family:"Times New Roman"">10,0

    ">Сахар(песок)

    ;font-family:"Times New Roman"">0,9

    ;font-family:"Times New Roman"">3,0

    ">Желатин

    ;font-family:"Times New Roman"">5,0

    ;font-family:"Times New Roman"">100,0

    ">Орехи " xml:lang="en-US" lang="en-US"> ">(ядро)

    ;font-family:"Times New Roman"">21

    ;font-family:"Times New Roman"">50,0

    ">Конфеты

    ;font-family:"Times New Roman"">7,8

    ;font-family:"Times New Roman"">30,0

    ">Какао–порошок и шоколад

    ;font-family:"Times New Roman"">60

    ;font-family:"Times New Roman"">70,0

    ">Печенье

    ;font-family:"Times New Roman"">6,8

    ;font-family:"Times New Roman"">30,0

    ">Молочные изделия

    ">Молоко, кисломолочные

    ">изделия

    ;font-family:"Times New Roman"">4,5

    ;font-family:"Times New Roman"">5,0

    ">Молоко сгущенное

    ">консервированное

    ;font-family:"Times New Roman"">5,0

    ;font-family:"Times New Roman"">15,0

    ">Молоко сухое

    ;font-family:"Times New Roman"">5,0

    ;font-family:"Times New Roman"">5,0

    ">Сыры, творог

    ;font-family:"Times New Roman"">44

    ;font-family:"Times New Roman"">50,0

    ">Масло сливочное

    ;font-family:"Times New Roman"">0,3

    ;font-family:"Times New Roman"">5,0

    ">Растительные продукты

    ">Масло растительное

    ;font-family:"Times New Roman"">0,36

    ;font-family:"Times New Roman"">5,0

    ">Маргарины и жиры

    ;font-family:"Times New Roman"">2,0

    ;font-family:"Times New Roman"">10,0

    ">Овощи свежие и

    ">свежемороженые

    ;font-family:"Times New Roman"">1,5

    ;font-family:"Times New Roman"">10,0

    ">Грибы свежие, консервированные

    ">и сухие

    ;font-family:"Times New Roman"">2,9

    ;font-family:"Times New Roman"">20,0

    ;font-family:"Times New Roman"">4.6 Методы определения железа

    ;font-family:"Times New Roman"">Железо – необходимый элемент в жизнедеятельности человека, однако при повышенных содержаниях оно токсично. Установлено, что при потреблении железа >200 мг в день наступает гепатический сидероз. Железо является еще более сильным окислителем, чем медь, и вызывает такие же нежелательные явления. Поэтому часто железо в продуктах нормируют на более низком уровне, чем это необходимо по токсикологическим показателям (например, в жирах и маслах 1,5—5 мг/кг). Много содержится в бобовых растениях и в печени и почках животных (250—400 мг/кг). В напитках при хранении в металлической незащищенной таре из черного металла содержание железа может достигать 7мг/кг и выше.

    Озоление образцов, содержащих железо, проводят при температуре (500–600) ºС, иногда – до 800ºС. Окислители обычно не добавляют, однако азотная кислота и нитриты ускоряют окисление. При озолении образцов, содержащих хлориды, теряется некоторое количества железа .

    ;font-family:"Times New Roman"">Железо в биологических материалах легко определяют колориметрическими, спектрофотометрическими и другими инструментальными методами. Способность переходных металлов образовывать окрашенные комплексы используются во многих колориметрических методах. Низкие концентрации железа легко определить методами пламенной и беспламенной атомно-абсорбционной спектрофотометрии. Наиболее эффективными обычно бывает воздушно–ацетиленовое пламя, при этом другие неорганические вещества не создают помех. Перед анализом образцы подвергаются либо кислотной минерализации, либо озоляются с последующим растворением в разбавленной кислоте. Однако при непосредственном анализе жидких пищевых продуктов возникают трудности, связанные с вязкостью и поверхностным натяжением жидкости (растительного масла), а также с наличием в них растворенной углекислоты (пиво). Для решения этих проблем можно использовать метод добавок, а также дегазацию напитков, содержащих углекислый газ.

    ;font-family:"Times New Roman'">Имеются данные, что при атомно-абсорбционном определении присутствие в растворе лимонной кислоты в концентрации 200 мг/л снижает абсорбцию более чем на 50 %. Увеличение высоты пламени и добавление фосфорной кислоты позволяют устранить это действие. Было установлено, что применение пламени закись азота-ацетилена позволяет устранить практически все помехи.

    ;font-family:'Times New Roman'">
    ЗАКЛЮЧЕНИЕ

    ;font-family:'Times New Roman'">На сегодняшний день самыми современными и точными методами анализа пищевых продуктов являются колориметрический метод с использованием различных соединений, пламенная и беспламенная атомно-абсорбционная спектрометрия, вольтамперометрия, нейтронно-активационный анализ, а также пламенная фотометрия. Эти методы анализа позволяют определить такие тяжёлые металлы, как железо, свинец, кадмий, ртуть, цинк и др.

    ;font-family:'Times New Roman'">На организм человека и животных физиологическое действие металлов различно и зависит от природы металла, типа соединения, в котором он существует в природной среде, а также его концентрации. Многие тяжелые металлы проявляют выраженные комплексообразующие свойства. Так, в водных средах ионы этих металлов гидратированы и способны образовывать различные гидроксокомплексы, состав которых зависит от кислотности раствора. Если в растворе присутствуют какие-либо анионы или молекулы органических соединений, то ионы этих металлов образуют разнообразные комплексы различного строения и устойчивости. В ряду тяжелых металлов одни крайне необходимы для жизнеобеспечения человека и других живых организмов и относятся к так называемым биогенным элементам. Другие вызывают противоположный эффект и, попадая в живой организм, приводят к его отравлению или гибели.

    ;font-family:'Times New Roman'">В ходе написания курсовой работы я рассмотрела следующие проблемы:

    1. ;font-family:'Times New Roman';color:#000000">методы определения содержания тяжёлых металлов в различных пищевых продукта ;font-family:'Times New Roman'">х
    2. ;font-family:'Times New Roman'">отрицательное влияние тяжелых металлов на организм человека и животных
    3. ;font-family:'Times New Roman'">отрицательное влияние тяжелых металлов на окружающие среду и растения
    4. ;font-family:'Times New Roman'">болезни, возникающие от переизбытка тяжелых металлов в организме человека
    5. ;font-family:'Times New Roman'">поведение тяжелых металлов в воздухе, в воде, в почве.

    ;font-family:'Times New Roman'">
    СПИСОК ЛИТЕРАТУРЫ

    1. ;font-family:'Times New Roman'">Гончарова В.Н. Товароведение пищевых продуктов / В. Н. Гончарова, Е. Я. Голощапова. - 2-изд., перераб. – М. : Экономика, 1990. - 271 с.
    2. ;font-family:'Times New Roman'">Елисеева Л.Г. Товароведение и экспертиза продовольственных товаров

    ;font-family:'Times New Roman'"> / Л.Г. Елисеева ;font-family:'Verdana';color:#000000;background:#ffffff">- ;font-family:'Times New Roman';color:#000000;background:#ffffff">М.: МЦФЭР, ;font-family:'Verdana';color:#000000;background:#ffffff"> ;font-family:'Times New Roman'">2006. - 800с.

    1. ;font-family:'Times New Roman'">Круглякова Г.В. Товароведение продовольственных товаров / Г.В. Круглякова,Кругляков Г.Н. ;font-family:'Arial';color:#333333"> ;font-family:'Times New Roman';color:#333333">- ;font-family:'Times New Roman'">Изд. центр «Март»,2005. - 496 с.
    2. ;font-family:'Times New Roman'">Дубцов Г.Г. Товароведение пищевых продуктов / Дубцов Г. Г. – М.: Изд. Центр «Академия», 2008.- 264 с.
    3. ;font-family:'Times New Roman'"> Гаммидулаев С.Н. Товароведение и экспертиза плодоовощных товаров / Гаммидулаев С. Н., Иванова Е. В., Николаева С. П., Симонова В. Н. – ;font-family:'Times New Roman';background:#ffffff">СПб. : Троицкий мост, 2010. - 367 с.
    4. ;font-family:'Times New Roman'">Николаев М. А. Товароведение плодов и овощей / Николаева М. А. – ;font-family:'Times New Roman';color:#000000;background:#ffffff">М.: ИНФРА, 2001 ;font-family:'Times New Roman'">. – 120 с.
    5. ;font-family:'Times New Roman';color:#000000">Новикова А.М. Товароведение и организация торговли продовольственными товарами / Новикова А.М., Голубкина Т.С. ;font-family:'Times New Roman'">– ;font-family:'Times New Roman';color:#000000;background:#ffffff"> М: «Академия», 2004. - 480 с.
    6. ;font-family:'Times New Roman'">Алемасова А.С. Аналитическая атомно–абсорбционная спектроскопия /Алемасова А.С., Рокун А.Н., Шевчук И.А. – Севастополь: «Вебер», 2003. – 327 с.
    7. ;font-family:'Times New Roman'">Шимитл.Л. Химия и обеспечение человечества пищей. Пер. с англ.

    ;font-family:'Times New Roman'">/ Под ред. Л.Шимилта. – М.:Мир, 1986. - 616 с.

    1. ;font-family:'Times New Roman'"> Клячко Ю.А. Методы анализа пищевых продуктов. Проблемы аналитической химии / Клячко Ю.А., Беленький С.М. – М.: Наука, 1988.- 464 с.
    2. ;font-family:'Times New Roman'"> Дубцов, Г.Г. Товароведение пищевых продуктов/ Г.Г. Дубцов. – М.: Высшая школа, 2001. – 102 с.
  • Статьи по теме: