Свойства биномиального распределения. Дискретные распределения в EXCEL. Генерация случайных чисел. Биномиальное распределение

Биномиальное распределение - одно из важнейших распределений вероятностей дискретно изменяющейся случайной величины. Биномиальным распределением называется распределение вероятностей числа m наступления события А в n взаимно независимых наблюдениях . Часто событие А называют "успехом" наблюдения, а противоположное ему событие - "неуспехом", но это обозначение весьма условное.

Условия биномиального распределения :

  • в общей сложности проведено n испытаний, в которых событие А может наступить или не наступить;
  • событие А в каждом из испытаний может наступить с одной и той же вероятностью p ;
  • испытания являются взаимно независимыми.

Вероятность того, что в n испытаниях событие А наступит именно m раз, можно вычислить по формуле Бернулли:

где p - вероятность наступления события А ;

q = 1 - p - вероятность наступления противоположного события .

Разберёмся, почему биномиальное распределение описанным выше образом связано с формулой Бернулли . Событие - число успехов при n испытаниях распадается на ряд вариантов, в каждом из которых успех достигается в m испытаниях, а неуспех - в n - m испытаниях. Рассмотрим один из таких вариантов - B 1 . По правилу сложения вероятностей умножаем вероятности противоположных событий:

,

а если обозначим q = 1 - p , то

.

Такую же вероятность будет иметь любой другой вариант, в котором m успехов и n - m неуспехов. Число таких вариантов равно - числу способов, которыми можно из n испытаний получить m успехов.

Сумма вероятностей всех m чисел наступления события А (чисел от 0 до n ) равна единице:

где каждое слагаемое представляет собой слагаемое бинома Ньютона. Поэтому рассматриваемое распределение и называется биномиальным распределением.

На практике часто необходимо вычислять вероятности "не более m успехов в n испытаниях" или "не менее m успехов в n испытаниях". Для этого используются следующие формулы.

Интегральную функцию, то есть вероятность F (m ) того, что в n наблюдениях событие А наступит не более m раз , можно вычислить по формуле:

В свою очередь вероятность F (≥m ) того, что в n наблюдениях событие А наступит не менее m раз , вычисляется по формуле:

Иногда бывает удобнее вычислять вероятность того, что в n наблюдениях событие А наступит не более m раз, через вероятность противоположного события:

.

Какой из формул пользоваться, зависит от того, в какой из них сумма содержит меньше слагаемых.

Характеристики биномиального распределения вычисляются по следующим формулам .

Математическое ожидание: .

Дисперсия: .

Среднеквадратичное отклонение: .

Биномиальное распределение и расчёты в MS Excel

Вероятность биномиального распределения P n (m ) и значения интегральной функции F (m ) можно вычислить при помощи функции MS Excel БИНОМ.РАСП. Окно для соответствующего расчёта показано ниже (для увеличения нажать левой кнопкой мыши).


MS Excel требует ввести следующие данные:

  • число успехов;
  • число испытаний;
  • вероятность успеха;
  • интегральная - логическое значение: 0 - если нужно вычислить вероятность P n (m ) и 1 - если вероятность F (m ).

Пример 1. Менеджер фирмы обобщил информацию о числе проданных в течение последних 100 дней фотокамер. В таблице обобщена информация и рассчитаны вероятности того, что в день будет продано определённое число фотокамер.

День завершён с прибылью, если продано 13 или более фотокамер. Вероятность, что день будет отработан с прибылью:

Вероятность того, что день будет отработан без прибыли:

Пусть вероятность того, что день отработан с прибылью, является постоянной и равна 0,61, и число проданных в день фотокамер не зависит от дня. Тогда можно использовать биномиальное распределение, где событие А - день будет отработан с прибылью, - без прибыли.

Вероятность того, что из 6 дней все будут отработаны с прибылью:

.

Тот же результат получим, используя функцию MS Excel БИНОМ.РАСП (значение интегральной величины - 0):

P 6 (6 ) = БИНОМ.РАСП(6; 6; 0,61; 0) = 0,052.

Вероятность того, что из 6 дней 4 и больше дней будут отработаны с прибылью:

где ,

,

Используя функцию MS Excel БИНОМ.РАСП, вычислим вероятность того, что из 6 дней не более 3 дней будут завершены с прибылью (значение интегральной величины - 1):

P 6 (≤3 ) = БИНОМ.РАСП(3; 6; 0,61; 1) = 0,435.

Вероятность того, что из 6 дней все будут отработаны с убытками:

,

Тот же показатель вычислим, используя функцию MS Excel БИНОМ.РАСП:

P 6 (0 ) = БИНОМ.РАСП(0; 6; 0,61; 0) = 0,0035.

Решить задачу самостоятельно, а затем посмотреть решение

Пример 2. В урне 2 белых шара и 3 чёрных. Из урны вынимают шар, устанавливают цвет и кладут обратно. Попытку повторяют 5 раз. Число появления белых шаров - дискретная случайная величина X , распределённая по биномиальному закону. Составить закон распределения случайной величины. Определить моду, математическое ожидание и дисперсию.

Продолжаем решать задачи вместе

Пример 3. Из курьерской службы отправились на объекты n = 5 курьеров. Каждый курьер с вероятностью p = 0,3 независимо от других опаздывает на объект. Дискретная случайная величина X - число опоздавших курьеров. Построить ряд распределения это случайной величины. Найти её математическое ожидание, дисперсию, среднее квадратическое отклонение. Найти вероятность того, что на объекты опоздают не менее двух курьеров.

Здравствуйте! Мы уже знаем, что такое распределение вероятностей. Оно может быть дискретным или непрерывным, и мы узнали, что его называют плотностью распределения вероятностей. Теперь давайте изучим парочку более распространенных распределений. Предположим, у меня есть монета, причем правильная монета, и я собираюсь ее подбросить 5 раз. Также я определю случайную величину Х, обозначу ее заглавной буквой X, она будет равна количеству «орлов» при 5 подбрасываниях. Может, у меня есть 5 монет, я подброшу их все сразу и посчитаю, сколько у меня выпало «орлов». Или у меня могла бы быть одна монета, я могла бы ее подбросить 5 раз и посчитать, сколько раз у меня выпал «орел». Это, собственно, не имеет значения. Но давайте предположим, что у меня одна монета, и я подброшу ее 5 раз. Тогда у нас не будет неопределенности. Итак, вот определение моей случайной величины. Как мы знаем, случайная величина немного отличается от обычной переменной, она больше похожа на функцию. Она присваивает какое-то значение эксперименту. И эта случайная величина довольно проста. Мы просто считаем, сколько раз выпал «орел» после 5 подбрасываний, – это и есть наша случайная величина X. Давайте подумаем, какие могут быть вероятности разных значений в нашем случае? Так, какова вероятность того, что Х (заглавная Х) равна 0? Т.е. какова вероятность того, что после 5 подбрасываний ни разу не выпадет «орел»? Ну, это, по сути, то же самое, что вероятность выпадения одних «решек» (это так, небольшой обзор теории вероятностей). У вас должны выпасть одни «решки». Какова вероятность каждой из этих «решек»? Это 1/2. Т.е. здесь должно быть 1/2 умножить на 1/2, на 1/2, на 1/2 и снова на 1/2. Т.е. (1/2)⁵. 1⁵=1, разделить на 2⁵, т.е. на 32. Вполне логично. Так… Я немного повторю то, что мы проходили по теории вероятностей. Это важно для того, чтобы понимать, куда мы сейчас движемся и как, собственно, формируется дискретное распределение вероятностей. Итак, а какова вероятность того, что у нас ровно 1 раз выпадет «орел»? Ну, «орел» мог бы выпасть при первом подбрасывании. Т.е. могло бы быть так: «орел», «решка», «решка», «решка», «решка». Или «орел» мог бы выпасть при втором подбрасывании. Т.е. могла бы быть такая комбинация: «решка», «орел», «решка», «решка», «решка» и так далее. Один «орел» мог бы выпасть после любого из 5 подбрасываний. Какова вероятность каждой из этих ситуаций? Вероятность выпадения «орла» равна 1/2. Затем вероятность выпадения «решки», равная 1/2, умножить на 1/2, на 1/2, на 1/2. Т.е. вероятность каждой из этих ситуаций равна 1/32. Так же, как и вероятность ситуации, где Х=0. По сути, вероятность любого особого порядка выпадений «орла» и «решки» будет равна 1/32. Итак, вероятность этого равна 1/32. И вероятность этого равна 1/32. И вот такие ситуации имеют место потому, что «орел» мог бы выпасть при любом из 5 подбрасываний. Следовательно, вероятность того, что точно выпадет один «орел», равна 5*1/32, т.е. 5/32. Вполне логично. Теперь начинается интересное. Какова вероятность… (буду писать каждый из примеров другим цветом)… какова вероятность того, что моя случайная величина равна 2? Т.е. я подброшу монету 5 раз, и какова вероятность того, что 2 раза точно выпадет «орел»? Это уже интереснее, правда? Какие возможны комбинации? Могла бы быть «орел», «орел», «решка», «решка», «решка». Также могла бы быть «орел», «решка», «орел», «решка», «решка». И если подумать, что эти два «орла» могут стоять в разных местах комбинации, то можно немного запутаться. Уже нельзя размышлять о размещениях так, как мы это делали здесь, вверху. Хотя… можно, только рискуете запутаться. Вы должны понять одно. Для каждой из этих комбинаций вероятность равна 1/32. ½*½*½*½*½. Т.е. вероятность каждой из этих комбинаций равна 1/32. И мы должны подумать над тем, сколько существует таких комбинаций, удовлетворяющих нашему условию (2 «орла»)? Т.е. по сути, нужно представить, что есть 5 подбрасываний монеты, и нужно из них выбрать 2, при которых выпадает «орел». Давайте представим, что наши 5 подбрасываний собрались в кружочек, также представим, что у нас есть только два стула. И мы говорим: «Хорошо, кто из вас сядет на эти стулья для «орлов»? Т.е. кто из вас будет «орлом»? И нас не интересует то, в каком порядке они сядут. Я привожу такой пример, надеясь, что так вам будет понятнее. И может, вам захочется посмотреть некоторые уроки по теории вероятностей на эту тему, когда я буду говорить о биноме Ньютона. Потому что там я более детально углублюсь во все это. Но если вы будете рассуждать таким путем, то поймете, что такое биномиальный коэффициент. Потому что если будете думать так: хорошо, у меня 5 подбрасываний, при каком подбрасывании выпадет первый «орел»? Ну, здесь 5 возможностей того, при каком по счету подбрасывании выпадет первый «орел». А сколько возможностей для второго «орла»? Ну, первое подбрасывание, которое мы уже использовали, забрало одну возможность выпадения «орла». Т.е. одна позиция «орла» в комбинации уже занята одним из подбрасываний. Теперь осталось 4 подбрасывания, значит, второй «орел» может выпасть при одном из 4 подбрасываний. И вы это видели, вот здесь. Я выбрала так, что «орел» выпал при 1-м подбрасывании, и предположила, что при 1 из 4 оставшихся бросков также должен выпасть «орел». Итак, здесь только 4 возможности. Все, что я говорю, означает, что для первого «орла» у вас есть 5 различных позиций, на которые он может выпасть. А для второго уже остается только 4 позиции. Подумайте над этим. Когда мы вычисляем вот так, то порядок учитывается. Но для нас сейчас неважно, в какой последовательности выпадают «орлы» и «решки». Мы не говорим, что это «орел 1» или что это «орел 2». В обоих случаях это просто «орел». Мы могли бы предположить, что это «орел 1», а это – «орел 2». Или могло бы быть наоборот: это мог бы быть второй «орел», а это – «первый». И я говорю это потому, что важно понять, где использовать размещения, а где – сочетания. Нас не интересует последовательность. Так что, собственно, есть только 2 способа происхождения нашего события. Значит, делим это на 2. И как вы позже увидите, здесь 2! способов происхождения нашего события. Если было бы 3 «орла», тогда здесь было бы 3!, и я покажу вам, почему. Итак, это будет равно… 5*4=20 и разделить на 2 – получится 10. Поэтому здесь 10 различных комбинаций из 32, в которых у вас точно будет 2 «орла». Итак, 10*(1/32) равно 10/32, а чему это равно? 5/16. Запишу через биномиальный коэффициент. Это значение, вот здесь, вверху. Если подумать, то это – то же самое, что и 5!, деленный на… Что означает вот это 5*4? 5! – это 5*4*3*2*1. Т.е. если мне здесь нужно только 5*4, то для этого я могу разделить 5! на 3! Это равно 5*4*3*2*1, деленное на 3*2*1. И остается только 5*4. Значит, это – то же самое, что и этот числитель. И затем, т.к. нас не интересует последовательность, нам нужно здесь 2. Собственно, 2!. Умножить на 1/32. Такой была бы вероятность того, что у нас выпало бы точно 2 «орла». Какова вероятность того, что у нас точно 3 раза выпадет «орел»? Т.е. вероятность того, что Х=3. Итак, по той же логике, первый случай выпадения «орла» может иметь место при 1 из 5 подбрасываний. Второй случай выпадения «орла» может иметь место при 1 из 4 оставшихся подбрасываний. А третий случай выпадения «орла» может иметь место при 1 из 3 оставшихся подбрасываний. А сколько существует различных способов расставить 3 подбрасывания? В общем, сколько есть способов, чтобы расставить 3 предмета по местам? Это 3! И вы можете это вычислить или, возможно, захотите пересмотреть те уроки, в которых я подробнее это объясняла. Но если вы, например, возьмете буквы A, B и C, то всего есть 6 способов, с помощью которых вы их можете расставить. Можете рассматривать это как случаи выпадения «орлов». Здесь могли бы быть ACB, CAB. Могло бы быть BAC, BCA, и… Какой последний вариант, который я не назвала? CBA. Есть 6 способов расставить 3 разных предмета. Мы делим на 6, потому что не хотим повторно засчитывать эти 6 разных способов, потому что рассматриваем их как равнозначные. Здесь нас не интересует, при каком по счету подбрасывании выпадет «орел». 5*4*3… Это можно переписать, как 5!/2!. И разделить это еще на 3!. Это он и есть. 3! равен 3*2*1. Тройки сокращаются. Это становится равным 2. Это – равным 1. Еще раз, 5*2, т.е. равно 10. Каждая ситуация имеет вероятность 1/32, потому это опять равно 5/16. И это интересно. Вероятность того, что у вас выпадет 3 «орла» равна вероятности того, что у вас есть 2 орла. И причина этому… Ну, есть много причин тому, что так получилось. Но если подумать, что вероятность того, что выпадет 3 «орла» – то же самое, что вероятность выпадения 2 «решек». И вероятность выпадения 3 «решек» должна быть такой же, как и вероятность выпадения 2-х «орлов». И хорошо, что значения вот так срабатывают. Хорошо. Какова вероятность того, что Х=4? Мы можем использовать ту же формулу, что использовали прежде. Это могло бы быть 5*4*3*2. Итак, здесь запишем 5*4*3*2… Сколько есть различных способов расставить 4 предмета? Это 4!. 4! – это, по сути, вот эта часть, вот здесь. Это 4*3*2*1. Так, это сокращается, остается 5. Затем, каждая комбинация имеет вероятность 1/32. Т.е. это равно 5/32. И еще раз заметьте, что вероятность того, что 4 раза выпадет «орел» равна вероятности того, что 1 раз выпадет «орел». И в этом есть смысл, т.к. 4 «орла» – это то же самое, что случай выпадения 1 «решки». Вы скажете: ну, и при каком же подбрасывании выпадет эта одна «решка»? Ага, для этого здесь есть 5 различных комбинаций. И каждая из них имеет вероятность 1/32. И наконец, какова вероятность того, что Х=5? Т.е. выпадает «орел» 5 раз подряд. Должно быть так: «орел», «орел», «орел», «орел», «орел». Каждый из «орлов» имеет вероятность 1/2. Вы их перемножаете и получаете 1/32. Можно пойти другим путем. Если всего есть 32 способа, с помощью которых вы можете получить «орлы» и «решки» в этих экспериментах, то это – только один из этих способов. Здесь таких способов было 5 из 32. Здесь - 10 из 32. Тем не менее, вычисления мы провели, а теперь готовы нарисовать распределение вероятностей. Но мое время истекло. Позвольте продолжить на следующем уроке. А если вы в настроении, то, может, нарисуете перед тем, как смотреть следующий урок? До скорой встречи!

Не все явления измеряются в количественной шкале типа 1, 2, 3 … 100500 … Не всегда явление может принимать бесконечное или большое количество различных состояний. Например, пол у человека может быть либо М, либо Ж. Стрелок либо попадает в цель, либо не попадает. Голосовать можно либо «За», либо «Против» и т.д. и т.п. Другими словами, такие данные отражают состояние альтернативного признака – либо «да» (событие наступило), либо «нет» (событие не наступило). Наступившее событие (положительный исход) еще называют «успехом».

Эксперименты с такими данными называются схемой Бернулли , в честь известного швейцарского математика, который установил, что при большом количестве испытаний соотношение положительных исходов и общего количества испытаний стремится к вероятности наступления этого события.

Переменная альтернативного признака

Для того, чтобы в анализе задействовать математический аппарат, результаты подобных наблюдений следует записать в числовом виде. Для этого положительному исходу присваивают число 1, отрицательному – 0. Другими словами, мы имеем дело с переменной, которая может принимать только два значения: 0 или 1.

Какую пользу отсюда можно извлечь? Вообще-то не меньшую, чем от обычных данных. Так, легко подсчитать количество положительных исходов – достаточно просуммировать все значения, т.е. все 1 (успехи). Можно пойти далее, но для этого потребуется ввести парочку обозначений.

Первым делом нужно отметить, что положительные исходы (которые равны 1) имеют некоторую вероятность появления. Например, выпадение орла при подбрасывании монеты равно ½ или 0,5. Такая вероятность традиционно обозначается латинской буквой p . Следовательно, вероятность наступления альтернативного события равна 1 — p , которую еще обозначают через q , то есть q = 1 – p . Указанные обозначения можно наглядно систематизировать в виде таблички распределения переменной X .

Мы получили перечень возможных значений и их вероятности. Можно рассчитать математическое ожидание и дисперсию . Матожидание – это сумма произведений всех возможных значений на соответствующие им вероятности:

Вычислим матожидание, используя обозначения в таблицы выше.

Получается, что математическое ожидание альтернативного признака равно вероятности этого события – p .

Теперь определим, что такое дисперсия альтернативного признака. Дисперсия – есть средний квадрат отклонений от математического ожидания. Общая формула (для дискретных данных) имеет вид:

Отсюда дисперсия альтернативного признака:

Нетрудно заметить, что эта дисперсия имеет максимум 0,25 (при p=0,5) .

Стандартное отклонение – корень из дисперсии:

Максимальное значение не превышает 0,5.

Как видно, и математическое ожидание, и дисперсия альтернативного признака имеют очень компактный вид.

Биномиальное распределение случайной величины

Рассмотрим ситуацию под другим углом. Действительно, кому интересно, что среднее выпадение орлов при одном бросании равно 0,5? Это даже невозможно представить. Интересней поставить вопрос о числе выпадения орлов при заданном количестве бросков.

Другими словами, исследователя часто интересует вероятность наступления некоторого числа успешных событий. Это может быть количество бракованных изделий в проверяемой партии (1- бракованная, 0 — годная) или количество выздоровлений (1 – здоров, 0 – больной) и т.д. Количество таких «успехов» будет равно сумме всех значений переменной X , т.е. количеству единичных исходов.

Случайная величина B называется биномиальной и принимает значения от 0 до n (при B = 0 – все детали годные, при B = n – все детали бракованные). Предполагается, что все значения x независимы между собой. Рассмотрим основные характеристики биномиальной переменной, то есть установим ее математическое ожидание, дисперсию и распределение.

Матожидание биномиальной переменной получить очень легко. Математическое ожидание суммы величин есть сумма математических ожиданий каждой складываемой величины, а оно у всех одинаковое, поэтому:

Например, математическое ожидание количества выпавших орлов при 100 подбрасываниях равно 100 × 0,5 = 50.

Теперь выведем формулу дисперсии биномиальной переменной. Дисперсия суммы независимых случайных величин есть сумма дисперсий. Отсюда

Стандартное отклонение, соответственно

Для 100 подбрасываний монеты стандартное отклонение количества орлов равно

И, наконец, рассмотрим распределение биномиальной величины, т.е. вероятности того, что случайная величина B будет принимать различные значения k , где 0≤ k ≤n . Для монеты эта задача может звучать так: какова вероятность выпадения 40 орлов при 100 бросках?

Чтобы понять метод расчета, представим, что монета подбрасывается всего 4 раза. Каждый раз может выпасть любая из сторон. Мы задаемся вопросом: какова вероятность выпадения 2 орлов из 4 бросков. Каждый бросок независим друг от друга. Значит, вероятность выпадения какой-либо комбинации будет равна произведению вероятностей заданного исхода для каждого отдельного броска. Пусть О – это орел, Р – решка. Тогда, к примеру, одна из устраивающих нас комбинаций может выглядеть как ООРР, то есть:

Вероятность такой комбинации равняется произведению двух вероятностей выпадения орла и еще двух вероятностей не выпадения орла (обратное событие, рассчитываемое как 1 — p ), т.е. 0,5×0,5×(1-0,5)×(1-0,5)=0,0625. Такова вероятность одной из устраивающих нас комбинации. Но вопрос ведь стоял об общем количестве орлов, а не о каком-то определенном порядке. Тогда нужно сложить вероятности всех комбинаций, в которых присутствует ровно 2 орла. Ясно, все они одинаковы (от перемены мест множителей произведение не меняется). Поэтому нужно вычислить их количество, а затем умножить на вероятность любой такой комбинации. Подсчитаем все варианты сочетаний из 4 бросков по 2 орла: РРОО, РОРО, РООР, ОРРО, ОРОР, ООРР. Всего 6 вариантов.

Следовательно, искомая вероятность выпадения 2 орлов после 4 бросков равна 6×0,0625=0,375.

Однако подсчет подобным образом утомителен. Уже для 10 монет методом перебора получить общее количество вариантов будет очень трудно. Поэтому умные люди давно изобрели формулу, с помощью которой рассчитывают количество различных сочетаний из n элементов по k , где n – общее количество элементов, k – количество элементов, варианты расположения которых и подсчитываются. Формула сочетания из n элементов по k такова:

Подобные вещи проходят в разделе комбинаторики. Всех желающих подтянуть знания отправляю туда. Отсюда, кстати, и название биномиального распределения (формула выше является коэффициентом в разложении бинома Ньютона).

Формулу для определения вероятности легко обобщить на любое количество n и k . В итоге формула биномиального распределения имеет следующий вид.

Количество подходящих под условие комбинаций умножить на вероятность одной из них.

Для практического использования достаточно просто знать формулу биномиального распределения. А можно даже и не знать – ниже показано, как определить вероятность с помощью Excel. Но лучше все-таки знать.

Рассчитаем по этой формуле вероятность выпадения 40 орлов при 100 бросках:

Или всего 1,08%. Для сравнения вероятность наступления математического ожидания этого эксперимента, то есть 50 орлов, равна 7,96%. Максимальная вероятность биномиальной величины принадлежит значению, соответствующему математическому ожиданию.

Расчет вероятностей биномиального распределения в Excel

Если использовать только бумагу и калькулятор, то расчеты по формуле биномиального распределения, несмотря на отсутствие интегралов, даются довольно тяжело. К примеру значение 100! – имеет более 150 знаков. Раньше, да и сейчас тоже, для вычисления подобных величин использовали приближенные формулы. В настоящий момент целесообразно использовать специальное ПО, типа MS Excel. Таким образом, любой пользователь (даже гуманитарий по образованию) вполне может вычислить вероятность значения биномиально распределенной случайной величины.

Для закрепления материала задействуем Excel пока в качестве обычного калькулятора, т.е. произведем поэтапное вычисление по формуле биномиального распределения. Рассчитаем, например, вероятность выпадения 50 орлов. Ниже приведена картинка с этапами вычислений и конечным результатом.

Как видно, промежуточные результаты имеют такой масштаб, что не помещаются в ячейку, хотя везде и используются простые функции типа: ФАКТР (вычисление факториала), СТЕПЕНЬ (возведение числа в степень), а также операторы умножения и деления. Более того, этот расчет довольно громоздок, во всяком случаен не является компактным, т.к. задействовано много ячеек. Да и разобраться с ходу трудновато.

В общем в Excel предусмотрена готовая функция для вычисления вероятностей биномиального распределения. Функция называется БИНОМ.РАСП .

Число успехов – количество успешных испытаний. У нас их 50.

Число испытаний – количество бросков: 100 раз.

Вероятность успеха – вероятность выпадения орла при одном подбрасывании 0,5.

Интегральная – указывается либо 1, либо 0. Если 0, то рассчитается вероятность P(B=k) ; если 1, то рассчитается функция биномиального распределения, т.е. сумма всех вероятностей от B=0 до B=k включительно.

Нажимаем ОК и получаем тот же результат, что и выше, только все рассчиталось одной функцией.

Очень удобно. Эксперимента ради вместо последнего параметра 0 поставим 1. Получим 0,5398. Это значит, что при 100 подкидываниях монеты вероятность выпадения орлов в количестве от 0 до 50 равна почти 54%. А поначалу то казалось, что должно быть 50%. В общем, расчеты производятся легко и быстро.

Настоящий аналитик должен понимать, как ведет себя функция (каково ее распределение), поэтому произведем расчет вероятностей для всех значений от 0 до 100. То есть зададимся вопросом: какова вероятность, что не выпадет ни одного орла, что выпадет 1 орел, 2, 3, 50, 90 или 100. Расчет приведен в следующей картинке. Синяя линия – само биномиальное распределение, красная точка – вероятность для конкретного числа успехов k.

Кто-то может спросить, а не похоже ли биномиальное распределение на… Да, очень похоже. Еще Муавр (в 1733 г.) говорил, что биномиальное распределение при больших выборках приближается к (не знаю, как это тогда называлось), но его никто не слушал. Только Гаусс, а затем и Лаплас через 60-70 лет вновь открыли и тщательно изучили нормальной закон распределения. На графике выше отлично видно, что максимальная вероятность приходится на математическое ожидание, а по мере отклонения от него, резко снижается. Также, как и у нормального закона.

Биномиальное распределение имеет большое практическое значение, встречается довольно часто. С помощью Excel расчеты проводятся легко и быстро.

Глава 7.

Конкретные законы распределения случайных величин

Виды законов распределения дискретных случайных величин

Пусть дискретная случайная величина может принимать значения х 1 , х 2 , …, х n , … . Вероятности этих значений могут быть вычислены по различным формулам, например, при помощи основных теорем теории вероятностей, формулы Бернулли или по каким-то другим формулам. Для некоторых из этих формул закон распределения имеет свое название.

Наиболее часто встречающимися законами распределения дискретной случайной величины являются биномиальный, геометрический, гипергеометрический, закон распределения Пуассона.

Биномиальный закон распределения

Пусть производится n независимых испытаний, в каждом из которых может появиться или не появиться событие А . Вероятность появления этого события в каждом единичном испытании постоянна, не зависит от номера испытания и равна р =Р (А ). Отсюда вероятность не появления события А в каждом испытании также постоянна и равна q =1–р . Рассмотрим случайную величину Х равную числу появлений события А в n испытаниях. Очевидно, что значения этой величины равны

х 1 =0 – событие А в n испытаниях не появилось;

х 2 =1 – событие А в n испытаниях появилось один раз;

х 3 =2 – событие А в n испытаниях появилось два раза;

…………………………………………………………..

х n +1 = n – событие А в n испытаниях появилось все n раз.

Вероятности этих значений могут быть вычислены по формуле Бернулли (4.1):

где к =0, 1, 2, …, n .

Биномиальным законом распределения Х , равной числу успехов в n испытаниях Бернулли, с вероятностью успеха р .

Итак, дискретная случайная величина имеет биномиальное распределение (или распределена по биномиальному закону), если ее возможные значения 0, 1, 2, …, n , а соответствующие вероятности вычисляются по формуле (7.1).

Биномиальное распределение зависит от двух параметров р и n .

Ряд распределения случайной величины, распределенной по биномиальному закону, имеет вид:

Х k n
Р

Пример 7.1 . Производится три независимых выстрела по мишени. Вероятность попадания при каждом выстреле равна 0,4. Случайная величина Х – число попаданий в мишень. Построить ее ряд распределения.

Решение. Возможными значениями случайной величины Х являются х 1 =0; х 2 =1; х 3 =2; х 4 =3. Найдем соответствующие вероятности, используя формулу Бернулли. Нетрудно показать, что применение этой формулы здесь вполне оправдано. Отметим, что вероятность не попадания в цель при одном выстреле будет равна 1-0,4=0,6. Получим

Ряд распределения имеет следующий вид:

Х
Р 0,216 0,432 0,288 0,064

Нетрудно проверить, что сумма всех вероятностей равна 1. Сама случайная величина Х распределена по биномиальному закону. ■

Найдем математическое ожидание и дисперсию случайной величины, распределенной по биномиальному закону.

При решении примера 6.5 было показано, что математическое ожидание числа появлений события А в n независимых испытаниях, если вероятность появления А в каждом испытании постоянна и равна р , равно n ·р

В этом примере использовалась случайная величина, распределенная по биномиальному закону. Поэтому решение примера 6.5, по сути является доказательством следующей теоремы.

Теорема 7.1. Математическое ожидание дискретной случайной величины, распределенной по биномиальному закону, равно произведению числа испытаний на вероятность "успеха", т.е. М (Х )= n ·р.

Теорема 7.2. Дисперсия дискретной случайной величины, распределенной по биномиальному закону, равна произведению числа испытаний на вероятность "успеха" и на вероятность "неудачи", т.е. D (Х )= nрq.

Асимметрия и эксцесс случайной величины, распределенной по биномиальному закону, определяются по формулам

Эти формулы можно получить, воспользовавшись понятием начальных и центральных моментов.

Биномиальный закон распределения лежит в основе многих реальных ситуаций. При больших значениях n биномиальное распределение может быть аппроксимировано с помощью других распределений, в частности с помощью распределения Пуассона.

Распределение Пуассона

Пусть имеется n испытаний Бернулли, при этом число испытаний n достаточно велико. Ранее было показано, что в этом случае (если к тому же вероятность р события А очень мала) для нахождения вероятности того, что событие А появиться т раз в испытаниях можно воспользоваться формулой Пуассона (4.9). Если случайная величина Х означает число появлений события А в n испытаниях Бернулли, то вероятность того, что Х примет значение k может быть вычислена по формуле

, (7.2)

где λ = .

Законом распределения Пуассона называется распределение дискретной случайной величины Х , для которой возможными значениями являются целые неотрицательные числа, а вероятности р т этих значений находятся по формуле (7.2).

Величина λ = называется параметром распределения Пуассона.

Случайная величина, распределенная по закону Пуассона, может принимать бесконечное множество значений. Так как для этого распределения вероятность р появления события в каждом испытании мала, то это распределение иногда называют законом редких явлений.

Ряд распределения случайной величины, распределенной по закону Пуассона, имеет вид

Х т
Р

Нетрудно убедиться, что сумма вероятностей второй строки равна 1. Для этого необходимо вспомнить, что функцию можно разложить в ряд Маклорена, который сходится для любого х . В данном случае имеем

. (7.3)

Как было отмечено, закон Пуассона в определенных предельных случаях заменяет биномиальный закон. В качестве примера можно привести случайную величину Х , значения которой равны количеству сбоев за определенный промежуток времени при многократном применении технического устройства. При этом предполагается, что это устройство высокой надежности, т.е. вероятность сбоя при одном применении очень мала.

Кроме таких предельных случаев, на практике встречаются случайные величины, распределенные по закону Пуассона, не связанные с биномиальным распределением. Например, распределение Пуассона часто используется тогда, когда имеют дело с числом событий, появляющихся в промежутке времени (число поступлений вызовов на телефонную станцию в течение часа, число машин, прибывших на авто мойку в течение суток, число остановок станков в неделю и т.п.). Все эти события должны образовывать, так называемый поток событий, который является одним из основных понятий теории массового обслуживания. Параметр λ характеризует среднюю интенсивность потока событий.

Пример 7.2 . На факультете насчитывается 500 студентов. Какова вероятность того, что 1 сентября является днем рождения для трех студентов данного факультета?

Решение . Так как число студентов n =500 достаточно велико и р – вероятность родится первого сентября любому из студентов равна , т.е. достаточно мала, то можно считать, что случайная величина Х – число студентов, родившихся первого сентября, распределена по закону Пуассона с параметром λ = np = =1,36986. Тогда, по формуле (7.2) получим

Теорема 7.3. Пусть случайная величинаХ распределена по закону Пуассона. Тогда ее математическое ожидание и дисперсия равны друг другу и равны значению параметра λ , т.е. M (X ) = D (X ) = λ = np .

Доказательство. По определению математического ожидания, используя формулу (7.3) и ряд распределения случайной величины, распределенной по закону Пуассона, получим

Прежде, чем найти дисперсию, найдем вначале математическое ожидание квадрата рассматриваемой случайной величины. Получаем

Отсюда, по определению дисперсии, получаем

Теорема доказана.

Применяя понятия начальных и центральных моментов, можно показать, что для случайной величины, распределенной по закону Пуассона, коэффициенты асимметрии и эксцесса определяются по формулам

Нетрудно понять, что, так как по смысловому содержанию параметр λ = np положителен, то у случайной величины, распределенной по закону Пуассона, всегда положительны и асимметрия и эксцесс.

- (binomial distribution) Распределение, позволяющее рассчитать вероятность наступления какого либо случайного события, полученного в результате наблюдений ряда независимых событий, если вероятность наступления, составляющих его элементарных… … Экономический словарь

- (распределение Бернулли) распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях, если вероятность появления этого события в каждом испытании равна p(0 p 1). Именно, число? появлений этого события есть… … Большой Энциклопедический словарь

биномиальное распределение - — Тематики электросвязь, основные понятия EN binomial distribution …

- (распределение Бернулли), распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях, если вероятность появления этого события в каждом испытании равна р (0≤р≤1). Именно, число μ появлений этого события… … Энциклопедический словарь

биномиальное распределение - 1.49. биномиальное распределение Распределение вероятностей дискретной случайной величины X, принимающей любые целые значения от 0 до n, такое что при х = 0, 1, 2, ..., n и параметрах n = 1, 2, ... и 0 < p < 1, где Источник … Словарь-справочник терминов нормативно-технической документации

Распределение Бернулли, распределение вероятностей случайной величины X, принимающей целочисленные значения с вероятностями соответственно (биномиальный коэффициент; р параметр Б. р., наз. вероятностью положительного исхода, принимающей значения … Математическая энциклопедия

Распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях. Если при каждом испытании вероятность появления события равна р, причём 0 ≤ p ≤ 1, то число μ появлений этого события при n независимых… … Большая советская энциклопедия

- (распределение Бернулли), распределение вероятностей числа появлений нек рого события при повторных независимых испытаниях, если вероятность появления этого события в каждом испытании равна р (0<или = p < или = 1). Именно, число м появлений … Естествознание. Энциклопедический словарь

Биномиальное распределение вероятностей - (binomial distribution) Распределение, которое наблюдается в случаях, когда исход каждого независимого эксперимента (статистического наблюдения) принимает одно из двух возможных значений: победа или поражение, включение или исключение, плюс или … Экономико-математический словарь

биномиальное распределение вероятностей - Распределение, которое наблюдается в случаях, когда исход каждого независимого эксперимента (статистического наблюдения) принимает одно из двух возможных значений: победа или поражение, включение или исключение, плюс или минус, 0 или 1. То есть… … Справочник технического переводчика

Книги

  • Теория вероятностей и математическая статистика в задачах. Более 360 задач и упражнений , Д. А. Борзых. В предлагаемом пособии содержатся задачи различного уровня сложности. Однако основной акцент сделан на задачах средней сложности. Это сделано намеренно с тем, чтобы побудить студентов к…
  • Теория вероятностей и математическая статистика в задачах Более 360 задач и упражнений , Борзых Д.. В предлагаемом пособии содержатся задачи различного уровня сложности. Однако основной акцент сделан на задачах средней сложности. Это сделано намеренно с тем, чтобы побудить студентов к…
Статьи по теме: