Процесс взрыва сверхновой звезды. Взрыв сверхновой звезды. Влияние Сверхновых на окружающую среду

Тестировал возможности новой камеры, прикрепив ее к 40-сантиметровому телескопу. Для съемки он выбрал спиральную галактику NGC 613, расположенную в 80 млн световых лет в созвездии Скульптора, крупном созвездии в южном полушарии. Бузо на протяжении полутора часов снимал галактику с 20-секундной выдержкой, чтобы избежать засвечивания огнями города. В течение первых 20 минут фотографии выглядели одинаково.

А затем Бузо заметил яркую точку в конце одного из рукавов галактики и понял, что происходит что-то необыкновенное. Но не смог определить, что именно, и обратился за помощью к профессионалам.

Ознакомившись со снимками, астроном Мелина Берстен и ее коллеги из Института астрофизики в Ла-Плате поняли, что

Босо удалось зафиксировать редчайшее событие — вспышку сверхновой.

При вспышке сверхновой светимость звезды резко увеличивается на четыре-восемь порядков, а затем вспышка медленно затухает. Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвездное пространство. Как правило, сверхновые звезды наблюдаются постфактум, то есть когда событие уже произошло и его излучение достигло Земли. Взрывную волну, которую зафиксировал на камеру Бузо, можно наблюдать лишь в первые несколько часов. Заснять взрыв сложно, так как невозможно предсказать, когда он произойдет. До сих пор это никому не удавалось. По словам Берстен, шанс такого открытия — один на 10, если не на 100 миллионов.

Однако Бузо удалось зафиксировать самое начало этого процесса.

Victor Buso/Gaston Folatelli

«Фактически, некоторые исследователи уже стали задаваться вопросом, насколько верны теоретические модели взрыва сверхновой, — объясняет Берстен, возглавившая исследование. —

Наблюдения Бузо чрезвычайно ценны, даже в лотерею проще выиграть, чем сделать что-то подобное».

«Это как выиграть в космическую лотерею», — подтверждает астрофизик Алексей Филиппенко из Калифорнийского университета в Беркли, участвовавший в наблюдениях за сверхновой после взрыва. Данные о наблюдениях были опубликованы 21 февраля этого года в журнале Nature , ученые упомянули Бузо в числе соавторов.

«Данные Бузо исключительны, — отмечает Филиппенко. — Это великолепный пример партнерства любителей и профессиональных астрономов».

В течение двух месяцев после открытия сверхновой, получившей название SN 2016gkg, астрономы наблюдали за ней с помощью телескопов обсерватории Кека и Ликской обсерватории. Основываясь на открытии и дальнейших наблюдениях, Берстен и ее коллеги определили, что сверхновая была частью двойной звездной системы, которая потеряла внешние слои газа, сохранив лишь ядро, состоящее преимущественно из гелия. Спектральные данные показали, что это сверхновая типа IIb — массивная звезда, которая уже потеряла большую часть своей массы до взрыва.

Команда подсчитала, что масса SN 2016gkg была примерно в 20 раз больше массы Солнца, но к моменту взрыва звезда потеряла 3/4 массы. Сейчас, когда SN 2016gkg стала сверхновой, она уменьшилась до пяти солнечных масс.

Долгожданные визуальные данные помогут астрономам получить больше информации о структуре звезды непосредственно перед ее взрывом, а также информацию о самом взрыве.

«Профессиональные астрономы давно ждали чего-то подобного, — говорит Филиппенко. — Наблюдения за звездами в первые моменты взрыва предоставляют информацию, которая не может быть напрямую получена каким-либо другим способом».

В ноябре 2017 года «Газета.Ru» рассказывала о еще одном необычном открытии —

Которая пережила уже несколько взрывов и отказывается затухать.

Сверхновую iPTF14hls астрономы обнаружили в ходе астрономического обзора Palomar Transient Factory в сентябре 2014 года. Спустя несколько месяцев астрономы из обсерватории Лас Кумбрес в США заметили, что звезда перестала затухать и начала становиться ярче. Пересмотрев архивные данные, исследователи выяснили, что сверхновая в этом же месте была обнаружена в 1954 году. Каким-то образом она пережила взрыв и продолжила сиять, а затем снова взорвалась 50 лет спустя.

По подсчетам исследователей, до взрыва масса звезды в 50 раз превышала массу Солнца. Масштабы взрыва звезды, возможно, связаны с ее необычным поведением, предполагают они. Сверхновая iPTF14hls может оказаться первым обнаруженным примером пульсирующей парно-нестабильной сверхновой.

«Согласно этой теории, возможно, звезда была настолько массивной и горячей, что при взрыве породила антивещество в своем ядре. Это могло стать причиной того, что звезда была нестабильной и за годы существования пережила несколько вспышек, — предполагают исследователи. — Такие взрывы, как считается, были возможны только на раннем этапе существования Вселенной и сегодня уже не должны происходить. Это все равно, что встретить динозавра».

Сверхновая

Сверхно́вые звёзды - звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе.

Термином «сверхновые» были названы звёзды , которые вспыхивали гораздо (на порядки) сильнее так называемых «новых звёзд» . На самом деле, ни те, ни другие физически новыми не являются, всегда вспыхивают уже существующие звёзды. Но в нескольких исторических случаях вспыхивали те звёзды, которые ранее были на небе практически или полностью не видны, что и создавало эффект появления новой звезды. Тип сверхновой определяется по наличию в спектре вспышки линий водорода. Если он есть, значит сверхновая II типа, если нет - то I типа.

Физика сверхновых звёзд

Сверхновые II типа

По современным представлениям, термоядерный синтез приводит со временем к обогащению состава внутренних областей звезды тяжёлыми элементами. В процессе термоядерного синтеза и образования тяжёлых элементов звезда сжимается, а температура в её центре растёт. (Эффект отрицательной теплоёмкости гравитирующего невырожденного вещества.) Если масса ядра звезды достаточно велика (от 1,2 до 1,5 масс Солнца), то процесс термоядерного синтеза доходит до логического завершения с образованием ядер железа и никеля . Внутри кремниевой оболочки начинает формироваться железное ядро. Такое ядро вырастает за сутки и коллапсирует менее, чем за 1 секунду, как только достигнет чандрасекаровского предела . Для ядра этот предел составляет от 1,2 до 1,5 массы Солнца. Вещество падает внутрь звезды, причём отталкивание электронов не может остановить падения. Центральное ядро сжимается все сильнее, и в некоторый момент из-за давления в нём начинают идти реакции нейтронизации - протоны начинают поглощать электроны , превращаясь в нейтроны . Это вызывает быструю потерю энергии, уносимой образующимися нейтрино (т.н. нейтринное охлаждение). Вещество продолжает разгоняться, падать и сжиматься до тех пор, пока не начинает сказываться отталкивание между нуклонами атомного ядра (протонами, нейтронами). Строго говоря, сжатие происходит даже более этого предела: падающее вещество по инерции превосходит точку равновесия из-за упругости нуклонов на 50% ("максимальное стискивание"). Процесс коллапса центрального ядра настолько быстр, что вокруг него образуется волна разрежения. Тогда вслед за ядром к центру звезды устремляется и оболочка. После этого "сжатый резиновый мяч отдаёт назад", и ударная волна выходит во внешние слои звезды со скоростью от 30000 до 50000 км/с. Внешние части звезды разлетаются во все стороны, а в центре взорвавшейся области остаётся компактная нейтронная звезда или чёрная дыра . Это явление называется взрывом сверхновой II типа. Взрывы эти различны по мощности и другим параметрам, т.к. взрываются звёзды различной массы и различного химического состава. Есть данные, что при взрыве сверхновой II типа энергии выделяется не многим больше, чем при взрыве I типа, т.к. пропорциональная часть энергии поглощается оболочкой, но, возможно, что это не всегда так.

В описанном сценарии имеется ряд неясностей. В ходе астрономических наблюдений установлено, что массивные звёзды действительно взрываются, в результате чего образуются расширяющиеся туманности, а в центре остаётся быстро вращающаяся нейтронная звезда, излучающая регулярные импульсы радиоволн (пульсар). Но теория показывает, что идущая наружу ударная волна должна расщеплять атомы на нуклоны (протоны, нейтроны). На это должна тратиться энергия, в результате чего ударная волна должна погаснуть. Но почему-то этого не происходит: ударная волна за несколько секунд достигает поверхности ядра, далее - поверхности звезды и сдувает вещество. Рассматриваются несколько гипотез для разных масс, но они не кажутся убедительными. Возможно, в состоянии "максимального стискивания" или в ходе взаимодействия ударной волны с продолжающим падать веществом в силу вступают какие-то принципиально новые и неизвестные нам физические законы. Кроме того, при взрыве сверхновой с образованием чёрной дыры возникают следующие вопросы: почему вещество после взрыва не полностью поглощается чёрной дырой; имеется ли идущая наружу ударная волна и почему она не тормозится и имеется ли что-то аналогичное "максимальному стискиванию"?

Сверхновые типа Ia

Несколько другим выглядит механизм вспышек сверхновых звёзд типа Іа (SN Ia). Это так называемая термоядерная сверхновая, в основе механизма взрыва которой лежит процесс термоядерного синтеза в плотном углеродно -кислородном ядре звезды. Предшественниками SN Ia являются белые карлики с массой, близкой к пределу Чандрасекара . Принято считать, что такие звезды могут образовываться при перетекании вещества от второй компоненты двойной звёздной системы . Это происходит, если вторая звезда системы выходит за пределы своей полости Роша или относится к классу звёзд со сверхинтенсивным звёздным ветром . При увеличении массы белого карлика постепенно увеличивается его плотность и температура. Наконец, при достижении температуры порядка 3×10 8 K, возникают условия для термоядерного поджигания углеродно -кислородной смеси. От центра к внешним слоям начинает распространяться фронт горения, оставляя за собой продукты горения - ядра группы железа . Распространение фронта горения происходит в медленном дефлаграционном режиме и является неустойчивым к различным видам возмущений. Наибольшее значение имеет Релей-Тейлоровская неустойчивость, которая возникает из-за действия архимедовой силы на лёгкие и менее плотные продукты горения, по сравнению с плотной углеродно -кислородной оболочкой. Начинаются интенсивные крупномасштабные конвективные процессы, приводящие к ещё большему усилению термоядерных реакций и выделению необходимой для сброса оболочки сверхновой энергии (~10 51 эрг). Скорость фронта горения увеличивается, возможна турбулизация пламени и образование ударной волны во внешних слоях звезды.

Другие типы сверхновых

Существуют также SN Ib и Ic, предшественниками которых являются массивные звезды в двойных системах , в отличие от SN II, предшественниками которых являются одиночные звезды.

Теория сверхновых

Законченной теории сверхновых звёзд пока не существует. Все предлагаемые модели являются упрощёнными и имеют свободные параметры, которые необходимо настраивать для получения необходимой картины взрыва. В настоящее время в численных моделях невозможно учесть все физические процессы, происходящие в звёздах и имеющие значение для развития вспышки. Законченной теории звёздной эволюции также не существует.

Заметим, что предшественником известной сверхновой SN 1987A , отнесённой ко второму типу, является голубой сверхгигант , а не красный , как предполагалось до 1987 года в моделях SN II. Также, вероятно, в её остатке отсутствует компактный объект типа нейтронной звезды или чёрной дыры, что видно из наблюдений.

Место сверхновых во Вселенной

Согласно многочисленным исследованиям, после рождения Вселенной , она была заполнена только лёгкими веществами - водородом и гелием . Все остальные химические элементы могли образоваться только в процессе горения звёзд. Это означает, что наша планета (и мы с вами) состоим из вещества, образовавшегося в недрах доисторических звезд и выброшенного когда-то во взрывах сверхновых.

По расчётам учёных, каждая сверхновая II типа производит активного изотопа алюминия (26Al) около 0,0001 массы Солнца. Распад этого изотопа создаёт жёсткое излучение, которое длительно наблюдалось, и по его интенсивности рассчитано, что содержание в Галактике этого изотопа - менее трёх солнечных масс. Это означает, что сверхновые II типа должны взрываться в Галактике в среднем два раза в столетие, чего не наблюдается. Вероятно, в последние века многие подобные взрывы не замечались (происходили за облаками космической пыли). Поэтому большинство сверхновых наблюдается в других галактиках . Глубокие обзоры неба на автоматических камерах, соединённых с телескопами, позволяют сейчас астрономам открывать более 300 вспышек в год. В любом случае сверхновой звезде давно пора взрываться...

По одной из гипотез ученых, космическое облако пыли, появившееся в результате вспышки сверхновой, может держатся в космосе около двух или трёх миллиардов лет!

Наблюдения сверхновых звёзд

Для обозначения сверхновых астрономы используют следующую систему: сначала записываются буквы SN (от латинского S uperN ova), затем год открытия, а затем латинскими буквами - порядковый номер сверхновой в году. Например, SN 1997cj обозначает сверхновую звезду, открытую 26 * 3 (c ) + 10 (j ) = 88-ой по счету в 1997 году.

Наиболее известные сверхновые звёзды

  • Сверхновая SN 1604 (Сверхновая Кеплера)
  • Сверхновая G1.9+0.3 (Самая молодая в нашей Галактике)

Исторические сверхновые в нашей Галактике (наблюдавшиеся)

Сверхновая Дата вспышки Созвездие Макс. блеск Расстояние (св. года) Тип вспышки Длительность видимости Остаток Примечания
SN 185 , 7 декабря Центавр -8 3000 Ia ? 8 - 20 месяцев G315.4-2.3 (RCW 86) китайские летописи: наблюдалась рядом с Альфой Центавра.
SN 369 не известно не известно не известно не известно 5 месяцев не известно китайские летописи: положение известно очень плохо. Если она находилась вблизи галактического экватора, весьма вероятно, что это была сверхновая, если же нет, она, скорее всего, была медленной новой.
SN 386 Стрелец +1.5 16,000 II ? 2-4 месяца
SN 393 Скорпион 0 34000 не известно 8 месяцев несколько кандидатур китайские летописи
SN 1006 , 1 мая Волк -7,5 7200 Ia 18 месяцев SNR 1006 швейцарские монахи, арабские учёные и китайские астрономы.
SN 1054 , 4 июля Телец -6 6300 II 21 месяц Крабовидная туманность на Ближнем и Дальнем Востоке (в европейских текстах не значится, не считая туманных намёков в ирландских монастырских хрониках).
SN 1181 , август Кассиопея -1 8500 не известно 6 месяцев Возможно, 3C58 (G130.7+3.1) труды профессора Парижского университета Александра Некэма, китайские и японские тексты.
SN 1572 , 6 ноября Кассиопея -4 7500 Ia 16 месяцев Остаток сверхновой Тихо Это событие зафиксировано во многих европейских источниках, в том числе и в записях молодого Тихо Браге . Правда, он заметил вспыхнувшую звезду лишь 11 ноября , но зато следил за ней целых полтора года и написал книгу "De Nova Stella" ("О новой звезде") - первый астрономический труд на эту тему.
SN 1604 , 9 октября Змееносец -2.5 20000 Ia 18 месяцев Остаток сверхновой Кеплера С 17 октября её стал изучать Иоганн Кеплер , который, изложил свои наблюдения в отдельной книге.
SN 1680 , 16 августа Кассиопея +6 10000 IIb не известно (не более недели) Остаток Сверхновой Кассиопея А замечена Флэмстидом, занес в свой каталог звезду, как 3 Cas.

См. также

Ссылки

  • Псковский Ю. П. Новые и сверхновые звёзды - книга о новых и сверхновых звездах.
  • Цветков Д. Ю. Сверхновые Звезды - современный обзор сверхновых звезд.
  • Алексей Левин Космические Бомбы - статья в журнале "Популярная Механика"
  • Список всех наблюдавшихся вспышек сверхновых звезд - List of Supernovae, IAU
  • Students for the Exploration and Development of Space - Supernovae

Примечания

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Сверхновая" в других словарях:

    Сущ., кол во синонимов: 1 звезда (503) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Одно из поразительнейших явлений природы - вспыш­ки сверхновых звезд. Это событие крайне редкое в жизни, звезд. В Галактике свыше 100 миллиардов звезд, однако за время существования телескопической астрономии в нашей звездной системе не наблюдалось ни одной вспыш­ки сверхновой. Невооруженный глаз человека видел, как сейчас считают, семь вспышек сверхновых, отмеченных в китайских, японских, корейских, арабских и европей­ских летописях. Их список дан в таблице.

Из таблицы видно, что сверхновая 393 года в l00 раз, а сверхновая 185 года в 40 раз в максимуме блеска были ярче Венеры, видимая звездная величина которой в мак­симуме блеска равна -4 m . Галактические широты вспы­шек показывают, что все они происходили поблизости от плоскости Симметрии Галактики. Моменты вспышек, оче­видно, совершенно случайны. В двух случаях промежут­ки между ними меньше 50 лет, но есть и промежуток в 6 столетий. Последняя вспышка сверхновой в нашей Галактике наблюдалась в 1604 г., за 5 лет до того как Галилей впервые навел телескоп на небо. Неверно было бы считать, что после этого в Галактике не было вспышек сверхновых. Можно быть уверенным, что за прошедшие почти 4 столетия они и не один раз происходили в да­леких областях Галактики близ ее плоскости, скрытые от нас непроницаемым слоем поглощающей свет пылевой материей.

В некотором отношении изучение свойств имевших место в прошлом семи вспышек сверхновых в нашей Галактике производится и сейчас. В результате вспышки в окружающем звезду объеме образовывалась газовая туманность - реликт сверхновой. Эти туманности продол­жают в наше время посылать по всем направлениям ра­диоизлучение, и благодаря этому их возможно исследо­вать. .В случае же вспышки сверхновой 1054 г. ее ре­зультатом является красивая Крабовидная туманность, хорошо наблюдаемая и в оптические телескопы. Оптиче­ски наблюдаемая туманность есть и на месте вспышки сверхновой 1604 г.

Однако наибольший интерес представляют наблюде­ния сверхновых в моменты быстрого изменения их бле­ска, в особенности около максимума блеска. Поэтому вспышки сверхновых, происшедшие в Галактике, не дают достаточно материала для изучения природы этого ред­костного явления. Возможно даже, что если бы их на­блюдали только в Галактике, то не было бы оснований для выделения их в особый класс вспыхивающих звезд, отличающихся от обыкновенных новых.

К счастью, сверхновые вспыхивают ив других галак­тиках. В максимуме блеска их светимость колоссальна, абсолютная звездная величина заключается в пределах от -12 m до -18m. Если допустить, что вспышка сверх­новой может наблюдаться, когда ее видимая звездная величина в максимуме блеска не превосходит +16 m , то это означает, что сверхновая с абсолютной звездной ве­личиной -16 m будет обнаружена на расстоянии до 25 Мпс. Это огромнейшее расстояние. Десятки тысяч галактик расположены к нам ближе 25 Мпс. Поэтому, наблюдая другие галактики, мы в десятки тысяч раз увеличиваем возможность наблюдать сверхновые звезды.

Первая вспышка сверхновой в другой галактике была зарегистрирована в 1885 г. Она произошла в туманности Андромеды. В максимуме блеска сверхновая имела види­мую звездную величину +7 m ,2 и могла наблюдаться в би­нокль. Можно подсчитать, зная расстояние, что ее абсолютная звездная величина была близка к -17 m . Следую­щие вспышки наблюдались в 1919 г. в NGC 4486 и в 1926 г. в NGC 4303.

С 1933 г. систематический поиск сверхновых предпринял Цвикки. За период до 1942 г. было обнаружено 19 вспышек. Однако вторая мировая война прервала ра­боту. Только с 1954 г. возобновился систематический по­иск. Особый прогресс был достигнут после того как в 1959 г. для этих целей стал использоваться 48-дюймовый (120 см) телескоп Шмидта обсерватории Маунт Паломар. Это мощный телескоп, обладающий важной особен­ностью,-видимая в поле его зрения площадь неба зна­чительно больше, чем у обычных телескопов.

Если до 1959 г. число открываемых сверхновых в год колебалось от двух до четырех, то в 1959 г. было обнару­жено 5 вспышек, в 1960 -18, в 1961 - 22, в 1962 -16, в 1963-22, в 1964-11, в 1965 - 14 и в 1966-12. С 1961 г. поиски сверхновых в других галактиках ведут 11стран, в том числе Советский Союз. Общее число всех зарегистрированных сверхновых в других галактиках на 1 сентября 1978 г. составило 456.

Для открытия сверхновой фотографируют последова­тельно участки неба и сравнивают снимки со снимками, сделанными в предыдущие дни. Если в какой-нибудь галактике появилась яркая точка, которой до этого не было, значит, вспыхнула сверхновая. Тогда эта галактика подвергается многократному фотографированию через оп­ределенные промежутки времени. На сверхновую направ­ляют также щель спектрографа, получают ее спектры. Обычно спектры можно получать только в моменты, близ­кие к максимуму блеска; после этого у сверхновой не­достаточно света, чтобы спектр на пластинке проявился. Расширение линий в спектрах показывает всегда, что сверхновые выбрасывают во все стороны газовую мате­рию, которая движется со скоростью в несколько тысяч километров в секунду.

Иногда блеск сверхновой в момент максимума бывает сравним с полным блеском той галактики, в которой про­изошла вспышка. Чаще он уступает полному блеску га­лактики, но ненамного. Только в случае сверхгигантских галактик разница блеска значительна.

Число галактик, входящих в область наблюдений и достаточно близких, чтобы происшедшая вспышка сверх­новой могла быть замечена, можно оценить в 5000.

Среднее число обнаруживаемых ежегодно вспышек за последние десять лет, когда можно считать, что число пропускаемых вспышек незначительно, равно приблизи­тельно 25. В сверхгигантских галактиках они происходят чаще, чем в гигантских, в гигантских чаще, чем в кар­ликовых. Приблизительно выполняется условие, согласно которому частота вспышек пропорциональна количеству материи в галактике. Но в спиральных галактиках они происходят чаще, чем в эллиптических, а среди спиралей они чаще всего случаются в тех, которые относятся к подтипу Sс, и реже всего в тех, которые относятся к под­типу Sа. Приблизительная оценка частоты вспышек сверхновых в гигантских галактиках равна одной за 50 лет.

Когда же, наконец, произойдет очередная вспышка сверхновой внутри нашей Галактики? Означает ли от­сутствие вспышек в течение 360 лет, что теперь они на­зрели и вероятность появления сверхновых в ближайшие годы возросла? Нет, не означает. Во-первых, мы не мо­жем утверждать, что в нашей системе за последние три c половиной столетия действительно не было сверхновых. Вспышки происходят близ галактической плоскости и да­лекие из них не могут наблюдаться вследствие сильного, поглощения света. Не заметить, пропустить явление сверх­новой в нашей Галактике легче, чем в любой другой галактике, если только последняя наблюдается не с ребра.

Но даже если длительное отсутствие вспышек реально, оно не увеличивает вероятности появления сверхновых в ближайшее время. Такова закономерность появления! случайного события тогда, когда оно может произой­ти с, ничтожно малой вероятностью у каждого из членов коллектива, а членов в коллективе очень много, на­пример, как звезд в Галактике. Поэтому, несмотря на то, что последняя вспышка сверхновой в нашей Галактике; наблюдалась в 1604 г., вероятность появления сверхновой в текущем году такая же малая, как и в 1605 г., который следовал за 1604 г.

Об этом стоит пожалеть. Сравнительно близкая вспышка сверхновой - это очень интересное зрелище, и она была бы очень ценным объектом исследования. Ее можно было бы заметить раньше, до достижения максимума] блеска, и изучить процесс нарастания яркости сверхновой, ускользающий при наблюдениях вспышек в других| галактиках. Наблюдения можно было бы вести долгой время после ослабления блеска, чтобы узнать, какова окончательная судьба сверхновой - вопрос, не разреши­мый для сверхновых в других галактиках. Значительная видимая яркость сверхновой позволила бы получить спектр с большим числом подробностей и произвести де­тальное исследование.

Но слишком близкая вспышка сверхновой может таить и опасность. Если бы эта катастрофа произошла, на­пример, с нашим ближайшим соседом - альфа Центавра, то в максимуме блеска сверхновая светила бы как 500 лун. При очень высокой температуре ее поверхности ультра­фиолетовое и еще более коротковолновое излучение, до­стигающее Земли, могло бы представить опасность для жизни на нашей планете.
Приглашаем Вас обсудить данную публикацию на нашем .

Мы уже видели, что, в отличие от Солнца и других стационарных звезд, у физических переменных звезд изменяются размеры, температура фотосферы, светимость. Среди различных видов нестационарных звезд особый интерес представляют новые и сверхновые звезды. На самом деле это не вновь появившиеся звезды, а ранее существовавшие, которые привлекли к себе внимание резким возрастанием блеска.

При вспышках новых звезд блеск возрастает в тысячи и миллионы раз за время от нескольких суток до нескольких месяцев. Известны звезды, которые повторно вспыхивали как новые. Согласно современным данным, новые звезды обычно входят в состав двойных систем, а вспышки одной из звезд происходят в результате обмена веществом между звездами, образующими двойную систему. Например, в системе “белый карлик – обычная звезда (малой светимости)” взрывы, вызывающие явление новой звезды, могут возникать при падении газа с обычной звезды на белый карлик.

Еще более грандиозны вспышки сверхновых звезд, блеск которых внезапно возрастает примерно на 19 m ! В максимуме блеска излучающая поверхность звезды приближается к наблюдателю со скоростью в несколько тысяч километров в секунду. Картина вспышки сверхновых звезд свидетельствует о том, что сверхновые – это взрывающиеся звезды.

При взрывах сверхновых в течение нескольких суток выделяется огромная энергия – порядка 10 41 Дж. Такие колоссальные взрывы происходят на заключительных этапах эволюции звезд, масса которых в несколько раз больше массы Солнца.

В максимуме блеска одна сверхновая звезда может светить ярче миллиарда звезд, подобных нашему Солнцу. При наиболее мощных взрывах некоторых сверхновых звезд может выбрасываться вещество со скоростью 5000 – 7000 км/с, масса которого достигает нескольких солнечных масс. Остатки оболочек, сброшенных сверхновыми звездами, видны долгое время как расширяющиеся газовые .

Обнаружены не только остатки оболочек сверхновых звезд, но и то, что осталось от центральной части некогда взорвавшейся звезды. Такими “звездными остатками” оказались удивительные источники радиоизлучения, которые получили названия пульсаров. Первые пульсары были открыты в 1967 г.

У некоторых пульсаров поразительно стабильна частота повторения импульсов радиоизлучения: импульсы повторяются через строго одинаковые промежутки времени, измеренные с точностью, превышающей 10 -9 с! Открытые пульсары находятся от нас на расстояниях, не превышающих сотни парсек. Предполагается, что пульсары – это быстровращающиеся сверхплотные звезды, радиусы которых около 10 км, а массы близки к массе Солнца. Такие звезды состоят из плотно упакованных нейтронов и называются нейтронными. Лишь часть времени своего существования нейтронные звезды проявляют себя как пульсары.

Вспышки сверхновых звезд относятся к редким явлениям. За последнее тысячелетие в нашей звездной системе наблюдалось всего лишь несколько вспышек сверхновых. Из них наиболее достоверно установлены следующие три: вспышка 1054 г. в созвездии Тельца, в 1572 г. – в созвездии Кассиопеи, в 1604 г. – в созвездии Змееносца. Первая из этих сверхновых описана как “звезда-гостья” китайскими и японскими астрономами, вторая – Тихо Браге, а третью наблюдал Иоганн Кеплер. Блеск сверхновых 1054 г. и 1572 г. превосходил блеск Венеры, и эти звезды были видны днем. Со времени изобретения телескопа (1609 г.) в нашей звездной системе не наблюдалось ни одной сверхновой звезды (возможно, что некоторые вспышки остались незамеченными). Когда же появилась возможность исследовать другие звездные системы, в них стали часто открывать новые и сверхновые звезды.

23 февраля 1987 г. сверхновая звезда вспыхнула в Большом Магеллановом Облаке (созвездие Золотой Рыбы) – самом большом спутнике нашей Галактики. Впервые после 1604 г. сверхновую звезду можно было видеть даже невооруженным глазом. До вспышки на месте сверхновой находилась звезда 12-й звездной величины. Максимального блеска 4 m звезда достигла в начале марта, а затем стала медленно угасать. Ученым, наблюдавшим сверхновую с помощью телескопов крупнейших наземных обсерваторий, орбитальной обсерватории “Астрон” и рентгеновских телескопов на модуле “Квант” орбитальной станции “Мир”, удалось впервые проследить весь процесс вспышки. Наблюдения проводились в разных диапазонах спектра, включая видимый оптический диапазон, ультрафиолетовый, рентгеновский и радиодиапазоны. В научной печати появлялись сенсационные сообщения о регистрации нейтринного и, возможно, гравитационного излучения от взорвавшейся звезды. Были уточнены и обогащены новыми результатами модели строения звезды в фазе, предшествующей взрыву.

МОСКВА, 13 фев - РИА Новости. Ученым впервые удалось увидеть вспышку сверхновой в первые часы после ее рождения и проследить за тем, как ударная волна "разгоняет" электроны в останках выброшенной звезды, говорится в статье, опубликованной в журнале Nature Physics.

"Сверхновые вспыхивают так ярко, что их можно увидеть с другого конца Вселенной, однако обычно они уже успевают разрушить часть своих собственных выбросов в тот момент, когда мы их замечаем. Поэтому эти наблюдения так ценны - мы впервые увидели газовую оболочку, окружающую умирающую звезду", — комментирует исследование Норберт Лангер (Norbert Langer) из Боннского университета (Германия).

Последняя вспышка звезды

Сверхновые звезды вспыхивают в результате гравитационного коллапса массивных звезд, когда тяжелое ядро звезды сжимается и создает волну разряжения, выбрасывающую легкое вещество внешних слоев светила в открытый космос. В результате этого образуется светящаяся газовая туманность, которая продолжает расширяться некоторое время после взрыва. Сверхновые первого типа образуются в результате взрыва двойной системы из белого карлика и более массивной звезды, а более распространенные вспышки второго типа — в результате взрыва звезд-гигантов.

Ученые: "нобелевская сверхновая" выбросила звезду из Галактики Как сегодня полагают ученые, большая часть гиперскоростных звезд рождается в результате взаимодействия с черной дырой, и они считают, что изучение орбит гиперскоростных звезд позволит судить о свойствах черных дыр и даже темной материи.

За последние годы ученые фиксировали сотни новых сверхновых и активно изучали их вспышки, что помогло нам узнать много нового о том, как рождаются элементы тяжелее железа, как могла возникнуть Солнечная система и какую роль сверхновые играют в эволюции галактик и рождении звезд в них. Тем не менее, главные тайны сверхновых остаются загадкой для астрономов, так как их обычно находят через несколько дней после того, как произойдет вспышка, и когда ударная волна, распространяющаяся от центра сверхновой через всю ее туманность, уже успеет уничтожить часть внешних оболочек умершей звезды.

Офер Ярон (Ofer Yaron) из Института науки Вейцмана в Реховоте (Израиль) сделали первый шаг к раскрытию этих тайн, получив фотографии и перве спектральные данные по сверхновой iPTF 13dqy, вспыхнувшей в созвездии Пегаса в галактике NGC 7610 всего через три часа после ее рождения. Она расположена относительно недалеко от Млечного Пути, всего в 160 миллионах световых лет, что позволило ученым детально изучить эту вспышку при помощи телескопа Swift и наземной Паломарской обсерватории.

Сама по себе iPTF 13dqy является обычной сверхновой второго типа, вспыхнувшей на ночном небе 6 октября 2013 года. Благодаря тому, что ее удалось быстро обнаружить, ученым удалось рассмотреть газовые оболочки, сброшенные ее прародителем в последние несколько миллионов лет жизни перед смертью.

Ученые ожидают взрыва сверхновой в Млечном пути в ближайшие 50 лет Поймать нужный момент астрономы планируют с помощью детектора нейтрино. Сверхновая испускает их с самого начала взрыва, но при этом может вспыхнуть в инфракрасном или видимом свете лишь через несколько минут, часов или дней.

Луковица сверхновой

Эти оболочки, как рассказывают ученые, являются источником самых мощных вспышек, порождаемых сверхновой. Газ в них сталкивается с ударной волной, исходящей из недр гибнущей звезды, и разогревается до сверхвысоких температур, в результате чего электроны "сбегают" от атомов и порождают мощные пучки ультрафиолета и других типов электромагнитных волн. Сила, продолжительность и другие характеристики этого излучения зависят от устройства оболочек бывшей звезды, благодаря чему Ярон и его коллеги смогли "увидеть" ее структуру, наблюдая за колебаниями в яркости отдельных линий в спектре iPTF 13dqy в первые часы ее существования.

© Ofer Yaron


Эти наблюдения показали, что диаметр этого шара из газа и пыли является достаточно большим - около 20 световых минут, или около 360 миллионов километров. Эта дистанция соответствует примерно тому же расстоянию, на котором расположен главный пояс астероидов между Юпитером и Марсом по отношению к Солнцу. Все следы этой структуры должны были исчезнуть примерно через 10 дней после взрыва звезды и достижения ударной волны самых далеких уголков ее газопылевого "кокона".

Существование этой структуры из газа и пыли указывает на то, что в последний год своей жизни умирающая звезда выбрасывала рекордно большие объемы газа и пыли в окружающее пространство, потеряв примерно 0,1% массы Солнца за это время. Подобное было возможным, как считают ученые, только в том случае, если недра звезды были крайне нестабильными в последние дни ее жизни.

Наличие подобной взаимосвязи между выбросами и процессами внутри звезды, которые ведут к ее взрыву, может помочь астрофизикам точнее предсказывать то, как взрываются сверхновые и как быстро взорвется ближайший к Земле кандидат на такую роль - красный супергигант Бетельгейзе в созвездии Ориона, удаленный от Земли всего на 640 световых лет. Как надеются исследователи, открытие других ранних сверхновых прояснит этот вопрос.

Статьи по теме: