Типы окислительно-восстановительных реакций в организме человека. Окислительно-восстановительный потенциал

ПЛОХИЕ ХОРОШИЕ СВОБОДНЫЕ РАДИКАЛЫ
АНТИОКСИДАНТЫ В КОСМЕТОЛОГИИ

Существует мнение, что одной из основных причин старения кожи и различных кожных заболеваний являются активные формы кислорода. С одной стороны, кислород играет важную роль в жизнеобеспечении нашего организма: участвует в окислительных и восстановительных химических реакциях - без него наше существование на Земле было бы невозможным. А с другой, вследствие таких реакций появляются свободные радикалы, избыток которых приводит к структурным изменениям клеток организма. Как это происходит, давайте разбираться.

ОКИСЛЕНИЕ - это нормальный и непрерывный процесс в нашем организме. Свободные радикалы образовываются в тот момент, когда кислород, участвующий в процессе метаболизма, теряет электрон. Таким образом, свободные радикалы - это атомы, которые на своей орбите имеют непарное количество электронов. Из-за нехватки электрона они становятся более активными. Хотя стоит сказать несколько слов в защиту свободных радикалов: они постоянно образовываются в нашем организме в качестве защитников от бактерий, вирусов, но это касается только первичных свободных радикалов. Пытаясь возместить недостающий электрон, свободные (вторичные) радикалы отбирают недостающий электрон, например, у молекулы, входящей в состав клеточной мембраны, превращая ее в новый (третичный) свободный радикал. Эта цепная реакция ослабляет клеточную мембрану, нарушая целостность клетки и открывая дорогу многим дегенеративным изменениям.

В норме наша иммунная система способна бороться с «агрессорами», но существуют факторы, которые снижают естественные защитные функции организма. Нарушение окислительно-восстановительного равновесия в сторону окисления и образования вторичных радикалов напрямую связаны с нашим образом жизни: длительное пребывание на солнце (солнечная радиация), табачный дым, хлорированная вода, непомерное количество консервантов, частый прием антибиотиков, загрязнение окружающей среды. Ученые считают, что вследствие образования свободных радикалов в организме человека формируются онкологические заболевания. Многие из вышеперечисленных факторов нам неподвластны, что-то мы не хотим менять, но многое изменить в наших силах.

КАК ЗАЩИТИТЬ НАШ ОРГАНИЗМ И НАШУ КОЖУ?

В борьбе со свободными радикалами выступают антиоксиданты, что переводится как «ингибиторы окисления». Молекулы антиоксидантов имеют лишний электрон, которым они с удовольствием делятся с ненасытными радикалами, при этом оставаясь стабильными соединениями. Таким образом, непрерывная цепочка разрушения молекул прекращается. В качестве антиоксидантов выступают некоторые витамины и микроэлементы (А, С, Е, селен, флавоноиды); гормон мелатонин; некоторые травы (черника, гинкго билоба, зеленый чай и т. д.).

Косметологи взяли на заметку эту информацию, и сегодня продукция по уходу за кожей содержит витамины и экстракты с высоким содержанием антиоксидантов. Особенно рекомендуется применять такие косметические продукты , если человек подвержен вредным привычкам.

Остановлюсь лишь на некоторых антиоксидантах, которые используются в косметических препаратах. Витамин А является мощным оружием против канцерогенов, усиливает иммунную систему. Витамин С как сильный антиоксидант защищает другие антиоксиданты, в частности, витамин Е. Он повышает синтез интерферона - естественного борца с вирусами, а также стимулирует активность иммунных клеток. Витамин Е предупреждает окисление липидов, а поскольку из липидов состоят мембраны клеток, он предотвращает их разрушение свободными радикалами.

Гормон мелатонин является самым эффективным антиоксидантом из всех открытых на сегодня, поскольку он способен проникать в любую часть организма. Особенностью гормона является время синтеза - на ночные часы приходится 70% суточной продукции мелатонина. У взрослого человека за сутки синтезируется около 30 мкг мелатонина, его концентрация в сыворотке крови ночью в 30 раз больше, чем днем, причем пик активности, в среднем по множеству наблюдений, приходится приблизительно на 2 часа ночи по местному солнечному времени. Мелатонин защищает клетки от необычайно широкого спектра неблагоприятных воздействий. В клетке он обеспечивает особую защиту ядра - центральной структуры, содержащей

Биологическое окисление – это совокупность окислительно-восстановительных превращений различных веществ в живых организмах. Окислительно-восстановительными называют реакции, протекающие с изменением степени окисления атомов вследствие перераспределения электронов между ними.

Типы процессов биологического окисления :

1)аэробное (митохондриальное) окисление предназначено для извлечения энергии питательных веществ с участием кислорода и накоплении её в виде АТФ. Аэробное окисление называется также тканевым дыханием , поскольку при его протекании ткани активно потребляют кислород.

2) анаэробное окисление – это вспомогательный способ извлечения энергии веществ без участия кислорода. Анаэробное окисление имеет большое значение при недостатке кислорода, а также при выполнении интенсивной мышечной работы.

3) микросомальное окисление предназначено для обезвреживания лекарств и ядов, а также для синтеза различных веществ: адреналина, норадреналина, меланина в коже, коллагена, жирных кислот, желчных кислот, стероидных гормонов.

4) свободнорадикальное окисление необходимо для регуляции обновления и проницаемости клеточных мембран.

Основным путём биологического окисления является митохондриальное , связанное с обеспечением организма энергией в доступной для использования форме. Источниками энергии для человека являются разнообразные органические соединения: углеводы, жиры, белки. В результате окисления питательные вещества распадаются до конечных продуктов, в основном - до СО 2 и Н 2 О (при распаде белков также образуется NH 3). Выделяемая при этом энергия накапливается в виде энергии химических связей макроэргических соединений, преимущественно – АТФ.

Макроэргическими называются органические соединения живых клеток, содержащие богатые энергией связи. При гидролизе макроэргических связей (обозначаются извилистой линией ~) высвобождается более 4 ккал/моль (20 кДж/моль). Макроэргические связи образуются в результате перераспределения энергии химических связей в процессе обмена веществ. Большинство макроэргических соединений являются ангидридами фосфорной кислоты, например, АТФ, ГТФ, УТФ и т.д. Аденозинтрифосфат (АТФ) занимает центральное место среди веществ с макроэргическими связями.

аденин – рибоза – Р ~ Р ~ Р, где Р – остаток фосфорной кислоты

АТФ находится в каждой клетке в цитоплазме, митохондриях и ядрах. Реакции биологического окисления сопровождаются переносом фосфатной группы на АДФ с образованием АТФ (этот процесс называется фосфорилированием ). Таким образом, энергия запасается в форме молекул АТФ и при необходимости используется для выполнения различных видов работы (механической, электрической, осмотической) и для осуществления процессов синтеза.

Система унификации субстратов окисления в организме человека

Непосредственное использование химической энергии, содержащейся в молекулах пищевых веществ невозможно, потому что при разрыве внутримолекулярных связей выделяется огромное количество энергии, которое может привести к повреждению клетки. Чтобы пищевые вещества, поступившие в организм, должны пройти ряд специфических превращений, в ходе которых происходит многостадийный распад сложных органических молекул на более простые. Это даёт возможность постепенного высвобождения энергии и запасания её в виде АТФ.

Процесс превращения разнообразных сложных веществ в один энергетический субстратназывается унификацией. Выделяют три этапа унификации:

1. Подготовительный этап протекаетв пищеварительном тракте, а также в цитоплазме клеток организма. Крупные молекулы распадаются на составляющие их структурные блоки: полисахариды (крахмал, гликоген) – до моносахаридов; белки – до аминокислот; жиры – до глицерина и жирных кислот. При этом выделяется небольшое количество энергии (около 1%), которая рассеивается в виде тепла.

2. Тканевые превращения начинаются в цитоплазме клеток, заканчиваются в митохондриях. Образуются ещё более простые молекулы, причём число их типов существенно уменьшается. Образующиеся продукты являются общими для путей обмена разных веществ: пируват, ацетил-коэнзимА (ацетил-КоА), α-кетоглутарат, оксалоацетат и др. Важнейшим из таких соединений является ацетил-КоА – остаток уксусной кислота, к которому макроэргической связью через серу S присоединён коэнзим А - активная форма витамина В 3 (пантотеновой кислоты). Процессы распада белков, жиров и углеводов сходятся на этапе образования ацетил-КоА, образуя в дальнейшем единый метаболический цикл. Для этого этапа характерно частичное (до 20%) освобождение энергии, часть которой аккумулируется в виде АТФ, а часть рассеивается в виде тепла.

3. Митохондриальный этап . Продукты, образовавшиеся на второй стадии, поступают в циклическую окислительную систему - цикл трикарбоновых кислот (цикл Кребса) и связанную с ним дыхательной цепи митохондрий. В цикле Кребса ацетил-КоА окисляется до СО 2 и водорода, связанного с переносчиками – НАД + ·Н 2 и ФАД·Н 2 . Водород поступает в дыхательную цепь митохондрий, где происходит его окисление кислородом до Н 2 О. Этот процесс сопровождается высвобождением примерно 80% энергии химических связей веществ, часть которой используется на образование АТФ, а часть - выделяется в виде тепла.

Углеводы

(полисахариды)

I подготовительный; высвобождается 1% энергии питательных веществ (в виде тепла);

аминокислоты

глицерин,

жирные кислоты

II тканевые превращения; 20% энергии в виде тепла и АТФ

ацетил-КоА (СН 3 -СО~SKoA)

III митохондриальный этап;

80% энергии (примерно половина - в виде АТФ, остальное - в виде тепла).

Цикл трикарбоновых кислот

Дыхательная цепь митохондрий О 2

Классификация и характеристика основных оксидоредуктаз в тканях

Важной особенностью биологического окисления является то, что оно протекает под действием определённых ферментов (оксидоредуктаз). Все необходимые ферменты для каждой стадии объединены в ансамбли, которые, как правило, фиксируются на различных клеточных мембранах. В результате слаженного действия всех ферментов химические превращения осуществляются постепенно, как на конвейере. При этом продукт реакции одной стадии является исходным соединением для следующей стадии.

Классификация оксидоредуктаз :

1. Дегидрогеназы осуществляют отщепление водорода от окисляемого субстрата:

SH 2 + A → S +AH 2

В процессах, связанных с извлечением энергии, наиболее распространённый тип реакций биологического окисления – дегидрирование , то есть отщепление от окисляемого субстрата двух атомов водорода и перенос их на окислитель. В действительности водород в живых системах находится не в виде атомов, а представляет собой сумму протона и электрона (Н + и ē), маршруты движения которых различны.

Дегидрогеназы являются сложными белками, их коферменты (небелковая часть сложного фермента) способны быть и окислителем, и восстановителем. Забирая водород от субстратов коферменты переходят в восстановленную форму. Восстановленные формы коферментов могут отдавать протоны и электроны водорода другому коферменту, который имеет более высокий окислительно-восстановительный потенциал.

1) НАД + - и НАДФ + -зависимые дегидрогеназы (коферменты - НАД + и НАДФ + - активные формы витамина РР). Присоединяют два атома водорода от окисляемого субстрата SH 2 , при этом образуется восстановленная форма - НАД + ·Н 2:

SH 2 + НАД + ↔ S + НАД + ·Н 2

2) ФАД-зависимые дегидрогеназы (коферменты - ФАД и ФМН – активные формы витамина В 2). Окислительные способности этих ферментов позволяют им принимать водород как непосредственно от окисляющегося субстрата, так и от восстановленного НАДН 2 . При этом образуются восстановленные формы ФАД·Н 2 и ФМН·Н 2 .

SH 2 + ФАД ↔ S + ФАД·Н 2

НАД + ·Н 2 + ФМН ↔ НАД + + ФМН·Н 2

3) коэнзим Q или убихинон, который может дегидрировать ФАД·Н 2 и ФМН·Н 2 и присоединять два атома водорода, превращаясь в КоQ·Н 2 (гидрохинон ):

ФМН·Н 2 + КоQ ↔ ФМН + КоQ·Н 2

2. Железосодержащие переносчики электронов геминовой природы – цитохромы b, c 1 , c, a, a 3 . Цитохромы – это ферменты, относящиеся к классу хромопротеидов (окрашенных белков). Небелковая часть цитохромов представлена гемом , содержащим железо и близким по строению к гему гемоглобина.Одна молекула цитохрома способна обратимо принимать один электрон, при этом меняется степень окисления железа:

цитохром(Fe 3+) + ē ↔ цитохром(Fe 2+)

Цитохромы a, a 3 образуют комплекс, называемый цитохромоксидазой . В отличие от других цитохромов, цитохромоксидаза способна взаимодействовать с кислородом – конечным акцептором электронов.

Кислотные отходы являются естественным побочным продуктом клеточного метаболизма. В человеческом теле более 60 триллионов клеток, со средним жизненным циклом 4 недели. В конце цикла каждая клетка делится на две генетически эквивалентные единицы. Тем не менее, только половина из вновь образованных клеток предназначены для дальнейшего развития. Остальная часть слабых, пострадавших и загрязненных клеток просто умирает. Другие же миллионы клеток становятся кислотными отходами.

Естественный процесс старения также берет свое — внутренняя среда организма имеет тенденцию окисляться с течением лет. Часто бывает так, что за 45 лет организм теряет способность избавиться от накопленных кислотных отходов и начинает хранить его в различных частях тела в последствии вызывая болезнь.

Рассматривая каждую болезнь, мы обязательно должны разбирать ее причины и следствия. Удивительное количество и разнообразие физических проблем и заболеваний могут быть вызваны окислением организма. Сегодня подавляющее большинство населения страдает от проблем вызванных подкислением — из-за особых привычек питания и образа жизни, даже не подозревая это. Давайте рассмотрим факторы окисления:

  • Повышенное потребление кислотных продуктов.

Современный рацион содержит больше кислотных продуктов(ph ниже 7) поэтому наш, изначально щелочной организм, постепенно начинает окисляться.

  • Напитки, которые мы пьем ежедневно, так же относятся к кислотным (Кофе, вода

без газа, чай, пиво и тд.)

  • Снижение секреции (выделения) кислоты.

Во время физических упражнений, с потом выделяется большое кол-во кислот из организма, но в наше время у людей не всегда хватает времени для занятия спортом

Давайте рассмотрим питание — номер один из причин окисления организма. Все пищевые продукты обеспечивают необходимые питательные вещества и энергию, необходимые для развития и роста человеческого организма. Разница между хорошей и плохой пищей определяется относительным количеством опасных отходов,образующихся в результате его потребления. Имейте в виду, что щелочные вещества нейтрализуют кислотные отходы и очищают организм, а кислотные вещества приводят к окислению и загрязнению.

Одной из главных основ хорошего здоровья является кислотно-щелочной баланс. К сожалению, в продуктах,которые мы с Вами едим каждый день являются кислотными (Ph ниже 7). Щелочную пищу, такие как овощи, фрукты едят гораздо в меньших количествах. Давайте взглянем на употребляемых нами продуктов.

Из таблицы видно, что основная масса продуктов являются кислотными и имеют кислый ph, в следствии чего и происходит закисление организма, которое в дальнейшем вызывает различные заболевания. К примеру: в организме скопились кислотные отходы возле поджелудочной железы, а для их нейтрализации не хватает щелочных ионов кальция, человек заболевает диабетом. Конечно же не стоит целыми днями есть дыню, морковь, грушу(что относится к щелочи), а достаточно употреблять щелочную воду, которую можно получить с помощью , для поддержания Кислотно-щелочного баланса организма.

Давайте рассмотрим на конкретном примере, как влияет окисление организма на нашу кровь.

Картина крови здорового человека (Рис 1) Кровь при окислении организма (Рис 2)

На правом рисунке мы видим клетки крови, которые похожи на слипшиеся монеты – это эритроциты, но они не должны так выглядеть. Они должны быть разделены, свободно циркулировать в крови и распределять кислород. Но здесь этого не происходит. Кровь здесь на столько окислена, что клетки пытаются защититься от кислой среды. У этого человека нарушено распределение кислорода. Если вы обратите внимание то также увидите черные точки- это холестерин, который засоряет капилляры. Именно так возникают тромбы в сердце, в мозге.

На рисунке №1 мы видим уже изменившуюся картину спустя 20 минут после приема живой (щелочной воды). Эритроциты отделились, что означает ощелачивание крови. Они стали «транспортировать» кислород и стали чувствовать себя прекрасно.

Здоровые клетки нуждаются в щелочной среде. Фактические данные свидетельствуют о том, что избыточная кислотность является основной причиной всех болезней. Любое заболевание, от обычной простуды до рака, проявляется, когда тело становится не в состоянии справиться с накоплением кислотных отходов.

Есть много путей показать, что щелочная вода имеет значительное влияние на здоровье и функциональность человеческого организма. А сейчас давайте обобщим несколько вещей — так как это очень важно, чтобы минимизировать посещения к врачу:

  • Это Ваш
  • Температура
  • Общее самочувствие

Эти 3 параметра – показатели вашего общего состояния. Потому что как только Вы начнете употреблять живую воду, или что либо другое, что способно скорректировать ваш pH в щелочную сторону – Вы станете чувствовать себя лучше, и Ваш организм почувствует себя намного лучше из-за детоксикации, очищения и регенерации. Что повлечет за собой уменьшение приема лекарств!

Вконтакте

1. Реакция дегидрирования: SH 2 + HAD + = S + HADH+H +

2. Потеря электрона:O 2 0 + 1eàO 2 -

3. Перенос 2Н + от восстановленного субстрата на молекулярный кислород:SH 2 + O 2 0 +2e= S + H 2 O

4. Присоединение кислорода к субстрату: SH 2 + 1/2O 2 0 +2e= HO - S -H

2. Механизм возникновения электродного и редокс-потенциалов. Уравнения Нернста-Петерса .

Мерой окислительно-восстановительной способности веществ служат окислительно-восстановительные потенциалы. Рассмотрим механизм возникновения потенциала. При погружении химически активного металла (Zn, Al) в раствор его соли, например Zn в раствор ZnSO 4 , происходят дополнительное растворение металла в результате процесса окисления, образование пары, двойного электрического слоя на поверхности металла и возникновение потенциала пары Zn 2 +/Zn°.

Металл, погруженный в раствор своей соли, например цинк в растворе сульфата цинка, называют электродом первого рода. Это двухфазный электрод, который заряжается отрицательно. Потенциал образуется в результате реакции окисления (рис. 8.1). При погружении в раствор своей соли малоактивных металлов (Cu) наблюдается противоположный процесс. На границе металла с раствором соли происходит осаждение металла в результате процесса восстановления иона, обладающего высокой акцепторной способностью к электрону, что обусловлено высоким зарядом ядра и малым радиусом иона. Электрод заряжается положительно, в приэлектродном пространстве избыточные анионы соли формируют второй слой, возникает электродный потенциал пары Cu 2 +/Cu°. Потенциал образуется в результате процесса восстановления (рис. 8.2). Механизм, величина и знак электродного потенциала определяются строением атомов участников электродного процесса.

Итак, потенциал, который возникает на границе раздела металла с раствором в результате окислительного и восстановительного процессов, протекающих с участием металла (электрода) и образованием двойного электрического слоя называют электродным потенциалом .

Если отводить электроны с цинковой пластины на медную, то равновесие на пластинках нарушается. Для этого соединим цинковую и медную пластины, погруженные в растворы их солей, металлическим проводником, приэлектродные растворы - электролитным мостиком (трубка с раствором K 2 SO 4), чтобы замкнуть цепь. На цинковом электроде протекает полуреакция окисления:

а на медном - полуреакция восстановления:

Электрический ток обусловлен суммарной окислительно-восстановительной реакцией:



В цепи появляется электрический ток. Причиной возникновения и протекания электрического тока (ЭДС) в гальваническом элементе является разность электродных потенциалов (Е) - рис. 8.3.

Рис. 8.3. Схема электрической цепи гальванического элемента

Гальванический элемент - это система, в которой химическая энергия окислительно-восстановительного процесса превращается в электрическую. Химическая цепь гальванического элемента обычно записывается в виде краткой схемы, где слева помещают более отрицательный электрод, указывают пару, образующуюся на этом электроде, вертикальной чертой, показывают скачок потенциала. Две черты обозначают границу между растворами. Заряд электрода указывается в круглых скобках: (-) Zn°|Zn 2 +||Cu 2 +|Cu° (+) - схема химической цепи гальванического элемента.

Окислительно-восстановительные потенциалы пары зависят от природы участников электродного процесса и соотношения равновесных концентраций окисленной и восстановленной форм участников электродного процесса в растворе, температуры раствора и описываются уравнением Нернста.

Количественной характеристикой окислительно-восстановительной системы является редокс-потенциал , возникающий на границе раздела фаз платина - водный раствор. Величина потенциала в единицах СИ измеряется в вольтах (В) и рассчитывается по уравнению Нернста-Петерса:

где а(Oх) и a(Red) - активность окисленной и восстановленной форм соответственно; R - универсальная газовая постоянная; Т - термодинамическая температура, К; F - постоянная Фарадея (96 500 Кл/моль); n - число электронов, принимающих участие в элементарном редокс-процессе; а - активность ионов гидроксония; m - стехиометрический коэффициент перед ионом водорода в полуреакции. Величина φ° - стандартный редокс-потенциал, т.е. потенциал, измеренный при условиях а(Oх) = a(Red) = a(H +) = 1 и данной температуре.

Стандартный потенциал системы 2Н + /Н 2 принят равным 0 В. Стандартные потенциалы являются справочными величинами, табулируются при температуре 298К. Сильнокислая среда не характерна для биологических систем, поэтому для характеристики процессов, протекающих в живых системах, чаще используют формальный потенциал, определяемый при условии а(Oх) = a(Red), pH 7,4 и температуре 310К (физиологический уровень). При записи потенциала пара указывается в виде дроби, причем окислитель записывается в числителе, а восстановитель в знаменателе.



Для 25 °С (298К) после подстановки постоянных величин (R = = 8,31 Дж/моль град; F = 96 500 Кл/моль) уравнение Нернста принимает следующий вид:

где φ°- стандартный окислительно-восстановительный потенциал пары, В; с о.фю и с в.ф. - произведение равновесных концентраций окисленной и восстановленной форм соответственно; х и у - стехиометрические коэффициенты в уравнении полуреакций.

Электродный потенциал образуется на поверхности металлической пластины, погруженной в раствор ее соли, и зависит только от концентрации окисленной формы [М n+ ], так как концентрация восстановленной формы не изменяется. Зависимость электродного потенциала от концентрации одноименного с ним иона определяется уравнением:

где [М n+ ] - равновесная концентрация иона металла; n - число электронов, участвующих в полуреакции, и соответствует степени окисления иона металла.

Редокс-системы делят на два типа:

1) в системе осуществляется только перенос электронов Fe 3 + + ē = = Fe 2 +, Sn 2 + - 2ē = Sn 4 +. Это изолированное окислительно-восстановительное равновесие;

2) системы, когда перенос электронов дополняется переносом протонов, т.е. наблюдается совмещенное равновесие разных типов: протолитическое (кислотно-основное) и окислительно-восстановительное с возможной конкуренцией двух частиц протонов и электронов. В биологических системах важные редокс-системы относятся к этому типу.

Примером системы второго типа является процесс утилизации перекиси водорода в организме: Н 2 О 2 + 2Н + + 2ē ↔ 2Н 2 О, а также восстановление в кислой среде многих окислителей, содержащих кислород: CrО 4 2- , Cr 2 О 7 2- , MnО 4 - . Например, MnО 4 - + 8Н + + 5ē = = Mn 2 + + 4Н 2 О. В данной полуреакции участвуют электроны и протоны. Расчет потенциала пары ведут по формуле:

В более широком круге сопряженных пар окисленная и восстановленная формы пары находятся в растворе в различной степени окисления (MnО 4 - /Mn 2 +). В качестве измерительного электрода

в данном случае применяют электрод из инертного материала (Pt). Электрод не является участником электродного процесса и играет роль только переносчика электронов.

Потенциал, образующийся за счет окислительно-восстановительного процесса, происходящего в растворе, называют окислительно-восстановительным потенциалом.

Измерение его выполняют на окислительно-восстановительном электроде - это инертный металл, находящийся в растворе, содержащем окисленную и восстановленную формы пары. Например, при измерении Е o пары Fe 3 +/Fe 2 + применяют окислительно-восстановительный электрод - платиновый измерительный электрод. Электрод сравнения - водородный, потенциал пары которого известен.

Реакция, протекающая в гальваническом элементе:

Схема химической цепи: (-)Pt|(H 2 °), H+||Fe 3 +, Fe 2 +|Pt(+).

Итак, окислительно-восстановительный потенциал (ОВП) – это потенциал системы, в которой активности окислительной и восстановительной форм данного вещества равны единице. ОВП измеряется с помощью окислительно-восстановительных электродов в сочетании со стандартными электродами сравнения.

В каждой окислительно-восстановительной реакции есть своя редокс-пара – эта пара имеет вещество в окисленной и восстановленной форме (Fe +3 /Fe +2).

Количественной мерой активности редокс-пары является величина ее ОВП.

ОВП пары >>>окислитель

ОВП пары <<<восстановитель

ОВП зависит от:

1. Природы редокс-пары,

2. Концентрации

3. Температуры

3. Сравнительная сила окислителей и восстановителей. Прогнозирование направления редокс-процессов по величинам редокс-потенциалов .

Окислительно-восстановительный потенциал является мерой окислительно-восстановительной способности веществ. Значение стандартных потенциалов пар указаны в справочных таблицах.

Стандартные потенциалы электродов (Е°), выступающих как восстановители по отношению к водороду, имеют знак “-”, а знак “+” имеют стандартные потенциалы электродов, являющихся окислителями.

Металлы, расположенные в порядке возрастания их стандартных электродных потенциалов, образуют так называемыйэлектрохимический ряд напряжений металлов : Li, Rb, К, Ва, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au.

В ряду редокс-потенциалов отмечают следующие закономерности.

1. Если стандартный редокс-потенциал пары отрицателен, например φ°(Zn 2+ (р)/Zn°(т)) = -0,76 В, то по отношению к водородной паре, потенциал которой выше, данная пара выступает в качестве восстановителя. Потенциал образуется по первому механизму (реакции окисления).

2. Если потенциал пары положителен, например φ°(Сu 2 +(р)/ Cu(т)) = +0,345 В по отношению к водородной или другой сопряженной паре, потенциал которой ниже, данная пара является окислителем. Потенциал данной пары образуется по второму механизму (реакции восстановления).

3. Чем выше алгебраическая величина стандартного потенциала пары, тем выше окислительная способность окисленной формы и ниже восстановительная способность восстановленной формы этой пары. Снижение величины положительного потенциала и возрастание отрицательного соответствует падению окислительной и росту восстановительной активности. Например.

УДК 373.167.1

З. Н. Хисматуллина

СУЩНОСТЬ, НАПРАВЛЕНИЕ И РОЛЬ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЙ В БИОЛОГИИ И МЕДИЦИНЕ

Ключевые слова: окисление, восстановление, метаболизм, диссимиляция, окислительно-восстановительный

потенциал.

Показана роль окислительно-восстановительных реакций в обмене веществ и энергии, происходящем в организме человека и животных. Усвоение общих закономерностей протекания данного вида реакций необходимо для последующего изучения свойств неорганических и органических веществ и химических процессов в целом, протекающих в организме, что дает возможность изучать и управлять всей жизнедеятельностью человека.

Key words: oxidation, reduction, metabolism, dissimilation, redox-potential.

The role of the redox-reactions in the energy-exchange and substance-exchange that occur in humans and animals is shown. The understanding of the general laws of the occurrence of this reaction type is necessary for the further studying of the properties of the organic and nonorganic materials and chemical processes, which occur in the human body, in general. It makes it possible to study and control the whole of human life.

На протяжении всей истории прослеживается взаимосвязь медицины и химии, симбиоз этих двух наук приводил и приводит к обогащению и наибыстрейшему развитию каждой из них. Поэтому изучение химии или хотя бы знание ее основ, необходимо не только в медицинском вузе, но и всем тем, кто получает высшее профессиональное образование.

Нужно отметить, что в нашей стране очень развита молекулярная биология и генетика, уделяется большое внимание организации комплексных научных исследований по раскрытию физико-химической природы жизни, познанию сущности таких важнейших проявлений жизнедеятельности, как обмен веществ, мышление, память, наследственность, иммунитет и т.д. От результатов этих исследований зависят теоретическое вооружение и прогресс практической медицины в ближайшем будущем. Чтобы квалифицированный медико-социальный работник мог следить за ходом этих комплексных исследований, оценивать их значение для практической медико-социальной работы, он должен быть вооружен знаниями не только в области медицины, но и химии. Ведь в основе обмена веществ в конечном итоге лежат химические процессы - диффузия, растворение, диализ, гидролиз, испарение, конденсация и др.

Для специалистов междисциплинарных профессий, тем более медико-социальных работников высшей квалификации изучение элементов химии необходимо уже потому, что:

78 элементов входят в состав живых организмов;

44 элемента входят в состав применяемых в современной медицине лекарственных препаратов;

Изотопы 38 элементов в настоящее время используются для радиодиагностики и радиотерапии;

Более 70 элементов входят в состав материалов, применяемых для изготовления современной аппаратуры, приборов и инструментов .

Без достаточных познаний в области химии невозможно было бы эффективное использование всего арсенала средств целенаправленного воздействия на организм человека. Чтобы воспринять, систематизировать и осмыслить весь поток информации в области медицины и химии, необходимо опираться на определенный теоретический фундамент.

Более 70 % известных в настоящее время элементов входят в состав человеческого организма. В организме человека постоянно происходят различные химические реакции, в ре-

зультате чего образуется огромное количество самых разных химических соединений. Исходные вещества, необходимые для этого, поступают в организм с вдыхаемым воздухом, с пищей и питьевой водой. Основная часть синтезированных соединений используется в качестве строительных материалов или источников энергопитания и обеспечивает организму человека рост и развитие. Та же часть синтезированных соединений, которую можно рассматривать как шлаки или отходы этого процесса, выводится из организма.

В результате жизнедеятельности организма синтезируются вещества, которые являются химическими соединениями кислорода, углерода, водорода, азота, серы и фосфора. Кроме этих шести химических элементов, в метаболизме (обмене веществ) активно участвуют еще по меньшей мере двадцать шесть элементов: кальций, калий, натрий, хлор, железо, магний, фтор и так называемые микроэлементы - алюминий, бор, кремний, ванадий, хром, марганец, кобальт, никель, цинк, медь, мышьяк, бром, селен, стронций, молибден, кадмий, олово, йод, свинец. Обнаружены также еще сорок шесть элементов, правда, в ничтожно малых количествах и вероятно, они тоже играют важную физиологическую роль, которая пока до конца не выяснена.

Обмен веществ (метаболизм), происходящий в живом организме, включает огромное количество непрерывно протекающих и взаимосвязанных реакций. Живые организмы усваивают поступающие к ним из окружающей среды (главным образом с пищей) вещества, изменяют их химический состав и используют новые химические соединения для создания, обновления элементов ткани и аккумулирования больших запасов химической энергии. Поэтому процесс обмена веществ неразделим с сопутствующим ему процессом обмена энергии. Этот процесс обмена веществ и энергии является самым характерным признаком жизни, с его прекращением останавливается и жизнь.

Систематическое изучение обмена веществ, происходящего в организме человека и животных, было начато еще в конце XVIII века А.Лавуазье. С именем этого ученого, а также еще и М.В. Ломоносова связано установление роли кислорода в процессах жизнедеятельности организмов и в процессах горения. А.Лавуазье впервые доказал, что в организме человека и животных происходит непрерывное окисление органических веществ кислородом воздуха, с образованием диоксида углерода и одновременным выделением так называемой «животной теплоты». Он в числе первых пытался установить связь между количеством потребляемого человеком кислорода и выделяющегося диоксида углерода, показать, как влияют на интенсивность поглощения и генерации этих двух газов режимы питания и труда, температура окружающей среды.

В живом организме осуществляется целый ряд физико-химических процессов - испарение и конденсация, растворение и кристаллизация, электролитическая диссоциация и образование молекул из ионов и т. д. - многие сотни тысяч биохимических реакций, протекающих в зависимости от многочисленных условий внешней и внутренней среды. Но тем не менее, благодаря тонкой нейро-гуморальной регуляции достигается поразительное постоянство внутренней среды организма (гомеостазис).

Как известно, все химические реакции можно разделить на две большие группы:

1) обменные реакции, при которых происходит лишь рекомбинация атомов или ионов, но не имеет места изменение их степени окисления;

2) окислительно-восстановительные реакции, при которых происходит частичный или полный переход электронов от одних атомов или ионов к другим с соответствующим изменением степени окисления этих атомов или ионов .

Окислительно-восстановительные реакции играют исключительную роль в обмене веществ и энергии, происходящем в организме человека и животных. Первые представления о сущности окислительно-восстановительных реакций были введены выдающимся русским ученым Л.В.Писаржевским (1914 г.).

Окислительно-восстановительными реакциями называются химические реакции, при протекании которых степени окисления элементов изменяются. Изменение степеней окисле-

ния в ходе окислительно-восстановительных реакций обусловлено полным или частичным переходом электронов от атомов одного элемента к атомам другого элемента.

Атомы или ионы, отдающие электроны в ходе окислительно-восстановительного процесса другим атомам или ионам, называются восстановителями. При этом данный атом или ион окисляется, т.е. повышает свою степень окисления.

Атомы или ионы, присоединяющие к себе электроны, называются окислителями. При этом сам атом или ион восстанавливается, т.е. снижает свою степень окисления.

Реакция окисления неотделима от реакции восстановления, и оба эти процесса необходимо рассматривать в неразрывном единстве. При любой окислительно-восстановительной реакции алгебраическая сумма степеней окисления атомов остается неизменной .

Многие окислительно-восстановительные реакции сводятся только к взаимодействию окислителя и восстановителя. Но чаще всего, если реакция осуществляется в водной среде, на ход окислительно-восстановительного процесса оказывает большое влияние взаимодействие реагентов с ионами водорода и гидроксила воды, а также присутствующих в растворе кислот и щелочей. Иногда влияние среды на ход окислительно-восстановительного процесса столь велико, что некоторые реакции могут осуществляться только в кислой или щелочной среде. От кислотно-щелочного баланса среды зависит направление окислительно-восстановительной реакции, количество электронов, присоединяемых молекулой (ионом) окислителя и отдаваемых молекулой (ионом) восстановителя и т. д. Например, реакция между иодидами и иодатами с выделением элементов иода протекает только в присутствии сильных кислот, а в сильно щелочной среде при нагревании может протекать обратная реакция.

Обмен веществ, в котором окислительно-восстановительные процессы играют столь значительную роль, имеет две стороны: 1) пластическую, сводящуюся к синтезу сложных органических веществ, необходимых организму в качестве «строительных материалов» для обновления тканей и клеток, из веществ, которые поступают главным образом с пищей (это анаболические процессы, или процессы ассимиляции, требующие затрат энергии); 2) энергетическую, сводящуюся к распаду (окислению) сложных высокомолекулярных веществ, играющих роль биологического топлива, до более простых - в оды, диоксида углерода и т. д. (это катаболические процессы, или процессы диссимиляции, сопровождающиеся освобождением энергии).

Окислительно-восстановительные реакции являются необходимыми звеньями в сложной цепи как анаболических, так и катаболических процессов, но их роль особенно велика как основных источников энергии для живого организма. Организмы, существующие в аэробных условиях (т. е. в окислительной атмосфере кислорода воздуха), получают эту энергию за счет процесса дыхания, в результате которого поступающие в организм питательные вещества в клетках и тканях окисляются до диоксида углерода, воды, аммиака, мочевины и других продуктов жизнедеятельности, характеризующихся сравнительно небольшими значениями энергии и высокими значениями энтропии (от греч. - поворот, превращение - это мера беспорядка системы, состоящей из многих элементов).

В основе процессов дыхания лежит окислительно-восстановительная реакция, при которой молекула диатомного кислорода образует две молекулы воды. В процессе внешнего дыхания кислород воздуха связывается с гемоглобином и в форме оксигемоглобина доставляется с потоком крови к капиллярам тканей. В процессе тканевого, или клеточного дыхания, ткани и клетки поглощают этот кислород, за счет которого осуществляется окисление поступивших в организм из внешней среды белков, жиров и углеводов. одновременно образующийся диоксид углерода с потоком венозной крови направляется в легкие и там, диффундируя через стенки альвеол, оказывается в составе выдыхаемого воздуха. Но в этих процессах биологического окисления субстратами, непосредственно подвергающихся действию кислорода, являются не те высокомолекулярные соединения, которые первоначально находились в составе пищи, а образовавшиеся в результате гидролитического расщепления в желудочно-пищевом тракте более простые, низкомолекулярные продукты.

На первой стадии диссимиляции в результате гидролиза сложные углеводы - крахмал, сахароза, гликоген и другие при участии амилаз превращаются в глюкозу и другие моносахариды. Жиры при участии липаз превращаются в жирные кислоты и глицерин. Белки под действием протеолитических ферментов превращаются в низкомолекулярные пептиды и аминокислоты. На этой стадии освобождается энергия, составляющая не более 1 % от общей химической энергии пищевых веществ. Часть продуктов, возникших на первой стадии диссимиляции, организм человека использует в качестве исходных веществ для анаболических реакций, связанных с получением материалов для застройки тканей и клеток, а также как запас химического топлива.

Другая часть продуктов гидролиза подвергается окислению, при котором наряду с диоксидом углерода, водой, аммиаком, мочевиной и т. д. образуются также продукты неполного окисления.

На второй стадии диссимиляции освобождается около 1/3 общего количества энергии, но еще не происходит аккумулирование выделившейся энергии путем образования высокоэр-гических веществ.

На третьей стадии диссимиляции происходит полное окисление всех образовавшихся во второй стадии промежуточных продуктов: воды, диоксида углерода, аммиака, мочевины и т. д. и освобождаются остальные 2/3 химической энергии, полученные организмом из пищевых веществ. Это сложный химический процесс, включающий десять последовательно протекающих реакций, каждая из которых катализируется соответствующим ферментом, называется циклом трикарбоновых кислот или циклом Кребса. Ферменты, необходимые для осуществления этих последовательных реакций, локализуются в мембранных структурных элементах клеток - митохондриях.

На третьей стадии диссимиляции освобождается 40-60 % энергии, которая используется организмом для синтеза высокоэргических веществ .

Таким образом, рассмотренные стадии диссимиляции в организме питательных веществ показывает, что энергоснабжение организма на 99 % обеспечивается протеканием в нем окислительно-восстановительных процессов.

Кроме того, с помощью окислительно-восстановительных реакций в организме разрушаются некоторые токсические вещества, образующиеся в ходе метаболизма. Именно таким путем организм избавляется от вредного влияния промежуточных продуктов биохимического окисления.

Сведения относительно окислительно-восстановительных свойств различных лекарственных препаратов позволяют решать вопросы о совместимости при одновременном их назначении больному, а также о допустимости их совместного хранения. С учетом этих данных становятся понятными несовместимость ряда лекарственных средств (например, таких как ио-дид калия и нитрит натрия, перманганат калия и тиосульфат натрия, пероксид водорода и ио-диды и т.д.).

Во многих случаях фармацевтические свойства медицинских препаратов находятся в непосредственной связи с их окислительно-восстановительными свойствами. Так, например, многие из антисептических, противомикробных и дезинфицирующих средств, (иод, перманганат калия, пероксид водорода, соли меди, серебра и ртути) являются в то же время и сильными окислителями.

Применение тиосульфата натрия в качестве универсального антидота (противоядия) основано на его способности участвовать в окислительно-восстановительных реакциях в роли как окислителя, так и восстановителя. В случае отравлений соединениями мышьяка, ртути и свинца, прием внутрь раствора тиосульфата натрия приводит к образованию труднорастворимых и потому практически неядовитых сульфатов. При отравлениях синильной кислотой или цианидами тиосульфат натрия дает возможность превратить эти токсичные вещества в менее ядовитые роданистые соединения. При отравлении галогенами и другими сильными окисли-

телями антитоксическое действие триосульфата натрия обусловлено его умеренными восстановительными свойствами .

Говоря об окислительно-восстановительных процессах, нужно отметить, что во время окислительных или восстановительных реакций изменяется электрический потенциал окисляемого или восстанавливаемого вещества: одно вещество, отдавая свои электроны и заряжаясь положительно, окисляется, другое, приобретая электроны и заряжаясь отрицательно, -восстанавливается. Разность электрических потенциалов между ними есть окислительновосстановительный потенциал (ОВП).

Окислительно-восстановительный потенциал является мерой химической активности элементов или их соединений в обратимых химических процессах, связанных с изменением заряда ионов в растворах. Это означает, что ОВП, называемый также, редокс-потенциал (от английского RedOx - Reduction/Oxidation), характеризует степень активности электронов в окислительно-восстановительных реакциях, т.е. в реакциях, связанных с присоединением или передачей электронов. При измерениях (в электрохимии) величина этой разности обозначается как Eh и выражается в милливольтах. Чем выше концентрация компонентов, способных к окислению, к концентрации компонентов, могущих восстанавливаться, тем выше показатель редокс-потенциала . Такие вещества, как кислород и хлор, стремятся к принятию электронов и имеют высокий электрический потенциал, следовательно, окислителем может быть не только кислород, но и другие вещества (в частности, хлор), а вещества типа водорода, наоборот, охотно отдают электроны и имеют низкий электрический потенциал. Наибольшей окислительной способностью обладает кислород, а восстановительной - водород, но между ними располагаются и другие вещества, присутствующие в воде и менее интенсивно выполняющие роль либо окислителей, либо восстановителей.

Значение ОВП для каждой окислительно-восстановительной реакции может иметь как положительное, так и отрицательное значение.

Так, например, в природной воде значение Eh колеблется от -400 до +700 мВ, что определяется всей совокупностью происходящих в ней окислительных и восстановительных процессов. В условиях равновесия значение ОВП определенным образом характеризует водную среду, и его величина позволяет делать некоторые общие выводы о химическом составе воды .

В биохимии величины редокс-потенциала выражаются не в милливольтах, а в условных единицах rH (reduction Hydrogenii).

Шкала условных единиц rH содержит 42 деления.

«0» - означает чистый водород,

«42» - чистый кислород,

«28» - нейтральная среда.

pH и rH тесно взаимосвязаны .

Окислительные процессы понижают показатель кислотно-щелочного равновесия (чем выше rH, тем ниже pH), восстановительные - способствуют повышению pH. В свою очередь показатель pH влияет на величину rH.

В организме человека энергия, выделяемая в ходе окислительно-восстановительных реакций, расходуется на поддержание гомеостаза (относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма) и регенерацию клеток организма, т. е. на обеспечение процессов жизнедеятельности организма.

ОВП внутренней среды организма человека, измеренный на платиновом электроде относительно хлорсеребряного электрода сравнения, в норме всегда меньше нуля, т.е. имеет отрицательные значения, которые обычно находятся в пределах от -100 до -200 милливольт. ОВП питьевой воды, измеренный таким же способом практически всегда больше нуля, обычно находится в пределах от +100 до +400 мВ. Это справедливо практически для всех типов питьевой воды, той, которая течет из водопроводных кранов во всех городах мира, которая продается в стеклянных и пластиковых бутылках, которая получается после очистки в уста-

новках обратного осмоса и большинства разнообразных больших и малых водоочистительных систем.

Указанные различия ОВП внутренней среды организма человека и питьевой воды означают, что активность электронов во внутренней среде организма человека намного выше, чем активность электронов в питьевой воде.

Активность электронов является важнейшей характеристикой внутренней среды организма, поскольку напрямую связана с фундаментальными процессами жизнедеятельности.

Когда обычная питьевая вода проникает в ткани человеческого (или иного) организма, она отнимает электроны от клеток и тканей, которые состоят из воды на 80-90%. В результате этого биологические структуры организма (клеточные мембраны, органоиды клеток, нуклеиновые кислоты и другие) подвергаются окислительному разрушению. Так организм изнашивается, стареет, жизненно-важные органы теряют свою функцию. Но эти негативные процессы могут быть замедлены, если в организм с питьем и пищей поступает вода, обладающая свойствами внутренней среды организма, т. е. обладающая защитными и восстановительными свойствами .

Для того, чтобы организм оптимальным образом использовал в обменных процессах питьевую воду с положительным значением окислительно-восстановительного потенциала, ее ОВП должен соответствовать значению ОВП внутренней среды организма. Необходимое изменение ОВП воды в организме происходит за счет затраты электрической энергии клеточных мембран, т.е. энергии самого высокого уровня, энергии, которая фактически является конечным продуктом биохимической цепи трансформации питательных веществ.

Количество энергии, затрачиваемой организмом на достижение биосовместимости воды, пропорциональна ее количеству и разности ОВП воды и внутренней среды организма.

Если поступающая в организм питьевая вода имеет ОВП близкий к значению ОВП внутренней среды организма человека, то электрическая энергия клеточных мембран (жизненная энергия организма) не расходуется на коррекцию активности электронов воды и вода тотчас же усваивается, поскольку обладает биологической совместимостью по этому параметру. Если питьевая вода имеет ОВП более отрицательный, чем ОВП внутренней среды организма, то она подпитывает его этой энергией, которая используется клетками, как энергетический резерв антиокси-дантной защиты организма от неблагоприятного влияния внешней среды .

Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд других химических процессов в основе своей являются окислительновосстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления-восстановления.

Получение элементарных веществ (железа, хрома, марганца, золота, серебра, серы, хлора, иода и т. д.) и ценных химических продуктов (аммиака, щелочей, азотной, серной и других кислот) основана на окислительно-восстановительных реакциях.

На окислении-восстановлении в аналитической химии основаны методы объемного анализа: перманганатометрия, йодометрия, броматометрия и другие, играющие важную роль при контролировании производственных процессов и выполнении научных исследований. В органической химии для проведения ряда химических превращений самое широкое распространение нашли именно процессы окисления-восстановления.

Таким образом, большинство химических процессов, протекающих в природе и осуществляемых человеком в его практической деятельности, представляют собой окислительновосстановительные реакции. Эти реакции являются основными процессами, обеспечивающими жизнедеятельность любого организма и имеют огромное значение в теории и практике.

Глубокое знание сущности и закономерностей протекания химических реакций дает возможность управлять ими и использовать для синтеза новых веществ. Усвоение общих закономерностей протекания химических реакций необходимо для последующего изучения

свойств неорганических и органических веществ, что важно для понимания процессов, происходящих в организме человека.

Литература

1. Ахмадышин, Р.А. Оценка адсорбции витаминов и микроэлементов клеточной стенкой дрожжей Saccharomyces cerevisiae / Р.А.Ахмадышин, А. В. Канарский, З. А. Канарская. - Вестник Казан. технол. ун-та.- 2007. - № 6. - С. 83-86.

2. Балакирева, Ю.В. Изучение антиоксидантной активности коровьего и козьего молока / Ю.В.Балакирева, Ф.Ю. Ахмадуллина, А.А. Лапин. - Вестник Казан. технол. ун-та.- 2009. - № 1. -С. 56-60.

3. Егоров, А.С. Репетитор по химии / под ред. А.С.Егорова. - Изд. 24-е. - Ростов н/Д: Феникс, 2009. -762 с.

4. Ленский, А.С. Введение в бионеорганическую и биофизическую химию: Учеб. пособие для студентов медицинских вузов / А.С.Ленский. - М.: Высш. шк., 2009. - 256 с.

5. Николаев, А.Я. Биологическая химия: Учебник. - 3-е изд., перераб. и доп. / А.Я.Николаев. - М.: ООО «Медицинское информационное агентство», 2007. - 568 с.

© З. Н. Хисматуллина - канд. социол. наук, доц. каф. социальной работы, педагогики и психологии КНИТУ, [email protected].

Статьи по теме: