Механическое движение и его относительность. Система отсчета. Механическое движение. Система отсчёта

Лекция 2. Относительность механического движения. Системы отсчета. Характеристики механического движения: перемещение, скорость, ускорение.

Механика – раздел физики, в котором изучают механическое движение.

Механику подразделяют на кинематику, динамику и статику.

Кинематикойназывают раздел механики, в котором движение тел рассматривается без выяснения причин этого движения. Кинематика изучает способы описания движения и связь между величинами, характеризующими эти движения.

Задача кинематики: определение кинематических характеристик движения (траектории движения, перемещения, пройденного пути, координаты, скорости и ускорения тела), а также получение уравнений зависимости этих характеристик от времени.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Механическое движение относительно , выражение «тело движется» лишено всякого смысла, пока не определено, относительно чего рассматривается движение. Движение одного и того же тела относительно разных тел оказывается различным. Для описания движения тела нужно указать, по отношению к какому телу рассматривается движение. Это тело называют телом отсчета . Покой тоже относителен (примеры: пассажир в покоящемся поезде смотрит на проходящий мимо поезд)

Главная задача механики уметь вычислять координаты точек тела в любой момент времени.

Чтобы решить эту надо иметь тело, от которого ведется отсчет координат, связать с ним систему координат и иметь прибор для измерения промежутков времени.

Система координат, тело отсчета, с которым она связана, и прибор для отсчета времени образуют систему отсчета , относительно которой и рассматривается движение тела.

Системы координат бывают:

1. одномерная – положение тела на прямой определяется одной координатой x.

2. двумерная – положение точки на плоскости определяется двумя координатами x и y.

3. трехмерная – положение точки в пространстве определяется тремя координатами x, y и z.

Всякое тело имеет определенные размеры. Различные части тела находятся в разных местах пространства. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать его материальной точкой. Так можно поступать, например, при изучении движения планет вокруг Солнца.

Если все части тела движутся одинаково, то такое движение называется поступательным.

Поступательно движутся, например, кабины в аттракционе «Гигантское колесо», автомобиль на прямолинейном участке пути и т. д. При поступательном движении тела его также можно рассматривать как материальную точку.

Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь .

Понятие материальной точки играет важную роль в механике. Тело можно рассматривать как материальную точку, если его размеры малы по сравнению с расстоянием, которое оно проходит, или по сравнению с расстоянием от него до других тел.

Пример . Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, а рассчитывая траекторию движения космического корабля при стыковке со станцией, без учета ее размеров не обойтись.

Характеристики механического движения: перемещение, скорость, ускорение.

Механическое движение характеризуется тремя физическими величинами: перемещением, скоростью и ускорением.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает некоторую линию, которую называют траекторией движения тела.

Линия, по которой движется точка тела, называется траекторией движения.

Длина траектории называется пройденным путем.

Обозначается l, измеряется в метрах . (траектория – след, путь – расстояние)

Пройденный путь l равен длине дуги траектории, пройденной телом за некоторое время t. Путь скалярная величина .

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением. Перемещение есть векторная величина.

Вектор, соединяющий начальную и конечную точки траектории, называется перемещением.

Обозначается S , измеряется в метрах.(перемещение – вектор, модуль перемещения – скаляр)

Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка.

Обозначается v

Формула скорости: или

Единица измерения в СИ – м/с .

На практике используют единицу измерения скорости км/ч (36 км/ч = 10 м/с).

Измеряют скорость спидометром .

Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле:

Ускорение измеряют акселерометром

Единица измерения в СИ м/с 2

Таким образом, основными физическими величинами в кинематике материальной точки являются пройденный путь l, перемещение, скорость и ускорение. Путь l является скалярной величиной. Перемещение, скорость и ускорение – величины векторные. Чтобы задать векторную величину, нужно задать ее модуль и указать направление. Векторные величины подчиняются определенным математическим правилам. Вектора можно проектировать на координатные оси, их можно складывать, вычитать и т. д.

Относительность механического движения.

Механическое движение относительно. Движение одного и того же тела относительно разных тел оказывается различным.

Например, автомобиль движется по дороге. В автомобиле находятся люди. Люди движутся вместе с автомобилем по дороге. То есть люди перемещаются в пространстве относительно дороги. Но относительно самого автомобиля люди не движутся. В этом проявляется .

Для описания движения тела нужно указать, по отношению к какому телу рассматривается движение. Это тело называют телом отсчета. Покой тоже относителен. Например, пассажир в покоящемся поезде смотрит на проходящий мимо поезд и не понимает, какой поезд движется, пока не посмотрит на небо или землю.

Все тела во Вселенной движутся, поэтому не существует тел, которые находятся в абсолютном покое. По той же причине определить движется тело или нет, можно только относительно какого-либо другого тела.

Например, автомобиль движется по дороге. Дорога находится на планете Земля. Дорога неподвижна. Поэтому можно измерить скорость автомобиля относительно неподвижной дороги. Но дорога неподвижна относительно Земли. Однако сама Земля вращается вокруг Солнца. Следовательно, дорога вместе с автомобилем также вращается вокруг Солнца. Следовательно, автомобиль совершает не только поступательное движение, но и вращательное (относительно Солнца). А вот относительно Земли автомобиль совершает только поступательное движение. В этом проявляется относительность механического движения .

Движение одного и того же тела может выглядеть по-разному с точки зрения различных наблюдателей. Скорость, направление движения и вид траектории тела будут различными для различных наблюдателей. Без указания тела отсчета разговор о движении является бессмысленным. Например, сидящий пассажир в поезде покоится относительно вагона, но движется вместе с вагоном относительно платформы вокзала.

Проиллюстрируем теперь для различных наблюдателей различие вида траектории движущегося тела. Находясь на Земле, на ночном небе легко можно видеть яркие быстро летящие точки - спутники. Они движутся по круговым орбитам вокруг Земли, то есть вокруг нас. Сядем теперь в космический корабль, летящий к Солнцу. Мы увидим, что теперь каждый спутник движется не по окружности вокруг Земли, а по спирали вокруг Солнца:

Относительность механического движения это зависимость траектории движения тела, пройденного пути, перемещения и скорости от выбора системы отсчёта .

Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными .

Галилей показал, что в условиях Земли практически справедлив закон инерции. Согласно этому закону действие на тело сил проявляется в изменениях скорости; для поддержания же движения с неизменной по величине и направлению скоростью не требуется присутствия сил. Системы отсчета, в которых выполняется закон инерции, стали называть инерциальные системы отсчета (ИСО) .

Системы, которые вращаются или ускоряются, неинерциальные.

Землю нельзя считать вполне ИСО: она вращается, но для большинства наших целей системы отсчета, связанные с Землей, в достаточно хорошем приближении можно принять за инерциальные.Система отсчета, движущаяся равномерно и прямолинейно относительно ИСО, также инерциальная .

Г. Галилей и И. Ньютон глубоко осознавали то, что мы сегодня называем принципом относительности , согласно которому механические законы физики должны быть одинаковыми во всех ИСО при одинаковых начальных условиях.

Из этого следует: ни одна ИСО ничем не отличается от другой системы отсчета. Все ИСО эквивалентны с точки зрения механических явлений.

Принцип относительности Галилея исходит из некоторых допущений, которые опираются на наш повседневный опыт. В классической механике пространство и время считаются абсолютными . Предполагается, что длина тел одинакова в любой системе отсчета и что время в различных системах отсчета течет одинаково. Предполагается, что масса тела, а также все силы остаются неизменными при переходе из одной ИСО в другую.

В справедливости принципа относительности нас убеждает повседневный опыт, например в равномерно движущемся поезде или самолете тела движутся так же, как и на Земле.

Не существует эксперимента, с помощью которого можно было бы установить, какая система отсчета действительно покоится, а какая движется. Нет систем отсчета в состоянии абсолютного покоя.

Если на движущейся тележке подбросить монету вертикально вверх, то в системе отсчета, связанной с тележкой, будет изменяться только координата ОУ.

В системе отсчета, связанной с Землей, изменяются координаты ОУ и ОХ.

Следовательно, положение тел и их скорости в разных системах отсчета различны.

Рассмотрим движение одного и того же тела относительно двух разных систем отсчета: неподвижной и движущейся.

Лодка пересекает реку перпендикулярно течению реки, двигаясь с некоторой скоростью относительно воды. За движением лодки следят 2 наблюдателя: один неподвижный на берегу, другой на плоту, плывущем по течению. Относительно воды плот неподвижен, а по отношению к берегу он движется со скоростью течения.

С каждым наблюдателем свяжем систему координат.

X0Y – неподвижная система координат.

X’0’Y’ – подвижная система координат.

S – перемещение лодки относительно неподвижной СО.

S 1 – перемещение лодки относительно подвижной СО

S 2 – перемещение подвижной системы отсчета относительно неподвижной СО.

По закону сложения векторов

Скорость получим разделив S на t:

v– скорость тела относительно неподвижной СО

v 1 – скорость тела относительно подвижной СО

v 2 – скорость подвижной системы отсчета относительно неподвижной СО

Эта формула выражает классический закон сложения скоростей: скорость тела относительно неподвижной СО равна геометрической сумме скорости тела относительно подвижной СО и скорости подвижной СО относительно неподвижной СО.

В скалярном виде формула будет иметь вид:

Впервые эту формулу получил Галилей.

Принцип относительности Галилея : все инерциальные системы отсчета равноправны; ход времени, масса, ускорение и сила в них записываются одинаково .

Можно ли быть неподвижным и при этом двигаться быстрее автомобиля Формулы 1? Оказывается, можно. Любое движение зависит от выбора системы отсчета, то есть любое движение относительно. Тема сегодняшнего урока: «Относительность движения. Закон сложения перемещений и скоростей». Мы узнаем, как выбрать систему отсчета в том или ином случае, как при этом найти перемещение и скорость тела.

Механическим движением называют изменение положения тела в пространстве относительно других тел с течением времени. В этом определении ключевой является фраза «относительно других тел». Каждый из нас относительно какой-либо поверхности неподвижен, но относительно Солнца мы совершаем вместе со всей Землей орбитальное движение со скоростью 30 км/с, то есть движение зависит от системы отсчета.

Система отсчета - совокупность системы координат и часов, связанных с телом, относительно которого изучается движение. Например, описывая движения пассажиров в салоне автомобиля, систему отсчета можно связать с придорожным кафе, а можно с салоном автомобиля или с движущимся встречным автомобилем, если мы оцениваем время обгона (рис. 1).

Рис. 1. Выбор системы отсчета

Какие же физические величины и понятия зависят от выбора системы отсчета?

1. Положение или координаты тела

Рассмотрим произвольную точку . В различных системах она имеет разные координаты (рис. 2).

Рис. 2. Координаты точки в разных системах координат

2. Траектория

Рассмотрим траекторию точки, находящейся на пропеллере самолета, в двух системах отсчета: системе отсчета, связанной с пилотом, и системе отсчета, связанной с наблюдателем на Земле. Для пилота данная точка будет совершать круговое вращение (рис. 3).

Рис. 3. Круговое вращение

В то время как для наблюдателя на Земле траекторией данной точки будет винтовая линия (рис. 4). Очевидно, что траектория зависит от выбора системы отсчета.

Рис. 4. Винтовая траектория

Относительность траектории. Траектории движения тела в различных системах отсчета

Рассмотрим, как меняется траектория движения в зависимости от выбора системы отсчета на примере задачи.

Задача

Какой будет траектория точки на конце пропеллера в разных СО?

1. В СО, связанной с летчиком самолета.

2. В СО, связанной с наблюдателем на Земле.

Решение:

1. Относительно самолета ни летчик, ни пропеллер не перемещаются. Для летчика траектория точки будет казаться окружностью (рис. 5).

Рис. 5. Траектория точки относительно летчика

2. Для наблюдателя на Земле точка движется двумя способами: вращаясь и двигаясь вперед. Траектория будет винтовой (рис. 6).

Рис. 6. Траектория точки относительно наблюдателя на Земле

Ответ : 1) окружность; 2) винтовая линия.

На примере данной задачи мы убедились, что траектория - это относительное понятие.

В качестве самостоятельной проверки предлагаем вам решить следующую задачу:

Какой будет траектория точки на конце колеса относительно центра колеса, если это колесо совершает поступательное движение вперед, и относительно точек, находящихся на земле (неподвижный наблюдатель)?

3. Перемещение и путь

Рассмотрим ситуацию, когда плывет плот и в какой-то момент с него спрыгивает пловец и стремится переправиться на противоположный берег. Перемещение пловца относительно рыбака, сидящего на берегу, и относительно плота будет разным (рис. 7).

Перемещение относительно земли называют абсолютным, а относительно движущегося тела - относительным. Перемещение движущегося тела (плота) относительно неподвижного тела (рыбака) называют переносным.

Рис. 7. Перемещение пловца

Из примера следует, что перемещение и путь являются относительными величинами.

4. Скорость

С помощью предыдущего примера можно легко показать, что скорость тоже относительная величина. Ведь скорость - это отношение перемещения ко времени. Время у нас одно и то же, а перемещение разное. Следовательно, скорость будет разной.

Зависимость характеристик движения от выбора системы отсчета называется относительностью движения .

В истории человечества были и драматичные случаи, связанные как раз с выбором системы отсчета. Казнь Джордано Бруно, отречение Галилео Галилея - все это следствия борьбы между сторонниками геоцентрической системы отсчета и гелиоцентрической системы отсчета. Уж очень сложно было человечеству привыкнуть к мысли о том, что Земля - это вовсе не центр мироздания, а вполне обычная планета. А движение можно рассматривать не только относительно Земли, это движение будет абсолютным и относительно Солнца, звезд или любых других тел. Описывать движение небесных тел в системе отсчета, связанной с Солнцем, намного удобнее и проще, это убедительно показали сначала Кеплер, а потом и Ньютон, который на основании рассмотрения движения Луны вокруг Земли вывел свой знаменитый закон всемирного тяготения.

Если мы говорим, что траектория, путь, перемещение и скорость являются относительными, то есть зависят от выбора системы отсчета, то про время мы этого не говорим. В рамках классической, или Ньютоновой, механики время есть величина абсолютная, то есть протекающее во всех системах отсчета одинаково.

Рассмотрим, как находить перемещение и скорость в одной системе отсчета, если они нам известны в другой системе отсчета.

Рассмотрим предыдущую ситуацию, когда плывет плот и в какой-то момент с него спрыгивает пловец и стремится переправиться на противоположный берег.

Как же связано перемещение пловца относительно неподвижной СО (связанной с рыбаком) с перемещением относительно подвижной СО (связанной с плотом) (рис. 8)?

Рис. 8. Иллюстрация к задаче

Перемещение в неподвижной системе отсчета мы назвали . Из треугольника векторов следует, что . Теперь перейдем к поиску соотношения между скоростями. Вспомним, что в рамках Ньютоновой механики время является абсолютной величиной (время во всех системах отсчета течет одинаково). Значит, каждое слагаемое из предыдущего равенства можно разделить на время. Получаем:

Это скорость, с которой движется пловец для рыбака;

Это собственная скорость пловца;

Это скорость плота (скорость течения реки).

Задача на закон сложения скоростей

Рассмотрим закон сложения скоростей на примере задачи.

Задача

Два автомобиля движутся навстречу друг другу: первый автомобиль со скоростью , второй - со скоростью . С какой скоростью сближаются автомобили (рис. 9)?

Рис. 9. Иллюстрация к задаче

Решение

Применим закон сложения скоростей. Для этого перейдем от привычной СО, связанной с Землей, к СО, связанной с первым автомобилем. Таким образом, первый автомобиль становится неподвижным, а второй движется к нему со скоростью (относительная скорость). С какой скоростью, если первый автомобиль неподвижен, вращается вокруг первого автомобиля Земля? Она вращается со скоростью и скорость направлена по направлению скорости второго автомобиля (переносная скорость). Два вектора, которые направлены вдоль одной прямой, суммируются. .

Ответ: .

Границы применимости закона сложения скоростей. Закон сложения скоростей в теории относительности

Долгое время считалось, что классический закон сложения скоростей справедлив всегда и применим ко всем системам отсчета. Однако порядка лет назад оказалось, что в некоторых ситуациях данный закон не работает. Рассмотрим такой случай на примере задачи.

Представьте себе, что вы находитесь на космической ракете, которая движется со скоростью . И капитан космической ракеты включает фонарик в направлении движения ракеты (рис. 10). Скорость распространения света в вакууме составляет . Какой же будет скорость света для неподвижного наблюдателя на Земле? Будет ли она равна сумме скоростей света и ракеты?

Рис. 10. Иллюстрация к задаче

Дело в том, что тут физика сталкивается с двумя противоречащими концепциями. С одной стороны, согласно электродинамике Максвелла, максимальная скорость - это скорость света, и она равна . С другой стороны, согласно механике Ньютона, время является абсолютной величиной. Задача решилась, когда Эйнштейн предложил специальную теорию относительности, а точнее ее постулаты. Он первым предположил, что время не является абсолютным. То есть где-то оно течет быстрее, а где-то медленнее. Конечно, в нашем мире небольших скоростей мы не замечаем данный эффект. Для того чтобы почувствовать эту разницу, нам необходимо двигаться со скоростями, близкими к скорости света. На основании заключений Эйнштейна был получен закон сложения скоростей в специальной теории относительности. Он выглядит следующим образом:

Это скорость относительно неподвижной СО;

Это скорость относительно подвижной СО;

Это скорость подвижной СО относительно неподвижной СО.

Если подставить значения из нашей задачи, то получим, что скорость света для неподвижного наблюдателя на Земле будет составлять .

Противоречие было решено. Также можно убедиться, что если скорости очень малы по сравнению со скоростью света, то формула для теории относительности переходит в классическую формулу для сложения скоростей.

В большинстве случаев мы будем пользоваться классическим законом.

Сегодня мы выяснили, что движение зависит от системы отсчета, что скорость, путь, перемещение и траектория - это понятия относительные. А время в рамках классической механики - понятие абсолютное. Научились применять полученные знания, разобрав некоторые типовые примеры.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Интернет-портал Class-fizika.narod.ru ().
  2. Интернет-портал Nado5.ru ().
  3. Интернет-портал Fizika.ayp.ru ().

Домашнее задание

  1. Дать определение относительности движения.
  2. Какие физические величины зависят от выбора системы отсчета?
Механическое движение

Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики.

Раздел механики, описывающий геометрические свойства движения без учёта причин, его вызывающих, называется кинематикой.

В более общем значении движением называется изменение состояния физической системы с течением времени. Например, можно говорить о движении волны в среде.

Виды механического движения

Механическое движение можно рассматривать для разных механических объектов:

  • Движение материальной точки полностью определяется изменением её координат во времени (например, двух на плоскости). Изучением этого занимается кинематика точки. В частности, важными характеристиками движения являются траектория материальной точки, перемещение, скорость и ускорение.
    • Прямолинейное движение точки (когда она всегда находится на прямой, скорость параллельна этой прямой)
    • Криволинейное движение �- движение точки по траектории, не представляющей собою прямую, с произвольным ускорением и произвольной скоростью в любой момент времени (например, движение по окружности).
  • Движение твёрдого тела складывается из движения какой-либо его точки (например, центра масс) и вращательного движения вокруг этой точки. Изучается кинематикой твёрдого тела.
    • Если вращение отсутствует, то движение называется поступательным и полностью определяется движением выбранной точки. Движение при этом не обязательно является прямолинейным.
    • Для описания вращательного движения �- движения тела относительно выбранной точки, например закреплённого в точке,�- используют Углы Эйлера. Их количество в случае трёхмерного пространства равно трём.
    • Также для твёрдого тела выделяют плоское движение �- движение, при котором траектории всех точек лежат в параллельных плоскостях, при этом оно полностью определяется одним из сечений тела, а сечение тела�- положением любых двух точек.
  • Движение сплошной среды . Здесь предполагается, что движение отдельных частиц среды довольно независимо друг от друга (обычно ограничено лишь условиями непрерывности полей скорости), поэтому число определяющих координат бесконечно (неизвестными становятся функции).

Геометрия движения

Относительность движения

Относительность�- зависимость механического движения тела от системы отсчёта. Не указав систему отсчёта, не имеет смысла говорить о движении.

Понятие механики . Механика – это часть физики, в которой изучают движение тел, взаимодействие тел или, движение тел под каким-либо взаимодействием.

Главная задача механики – это определение местоположения тела в любой момент времени.

Разделы механики: кинематика и динамика . Кинематика – это раздел механики, изучающий геометрические свойства движений без учета их масс и действующих на них сил. Динамика – это раздел механики, изучающий движение тел под действием приложенных к ним сил.

Движение. Характеристики движения . Движение – это изменение положения тела в пространстве с течением времени относительно других тел. Характеристики движения: пройденный путь, перемещение, скорость, ускорение.

Механическое движение это изменение положение тела (или его частей) в пространстве относительно других тел с течением времени.

Поступательное движение

Равномерное движение тела . Демонстрируется видеопоказом с объяснениями.

Неравномерное механическое движение – это движение, при котором за равные промежутки времени тело совершает неравные перемещения.

Относительность механического движения . Демонстрируется видеопоказом с объяснениями.

Точка отсчёта и система отсчёта в механическом движении . Тело, относительно которого рассматривается движение, называется точкой отсчёта. Система отсчёта в механическом движении – это точка отсчёта и система координат и часами.

Система отсчета. Характеристики механического движения . Система отсчета демонстрируется видеопоказом с объяснениями. Механическое движение имеет характеристики: Траектория; Путь; Скорость; Время.

Траектория прямолинейного движения – это линия, вдоль которой движется тело.

Криволинейное движение . Демонстрируется видеопоказом с объяснениями.

Путь и понятие скалярной величины . Демонстрируется видеопоказом с объяснениями.

Физические формулы и единицы измерения характеристик механического движения:

Обозначение величины

Единицы измерения величины

Формула для определения величины

Путь -s

м, км

S = vt

Время- t

с, час

T = s/v

Скорость - v

м/с, км/ч

V = s / t

П онятие ускорения . Раскрывается демонстрацией видеопоказа, с объяснениями.

Формула для определения величины ускорения :

3. Законы динамики Ньютона.

Великий физик И. Ньютон . И. Ньютон развенчал античные представления, что законы движения земных и небесных тел совершенно различны. Вся Вселенная подчинена единым законам, допускающим математическую формулировку.

Две фундаментальные задачи, решенные физикой И. Ньютона :

1. Создание для механики аксиоматической основы, которая перевела эту науку в разряд строгих математических теорий.

2. Создание динамики, связывающей поведение тела с характеристиками внешних воздействий на него (сил).

1. Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

2. Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует.

3. Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

Первый закон динамики И. Ньютона . Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

Понятия инерции и инертности тела . Инерция – это явление, при котором тело стремится сохранить свое первоначальное состояние. Инертность – это свойство тела сохранять состояние движения. Свойство инертности характеризуется массой тела.

Развитие Ньютоном теории механики Галилея . Долгое время считалось, что для поддержания любого движения необходимо осуществлять нескоменсированное внешнее воздействие со стороны других тел. Ньютон разбил эти убеждения, выведенные Галилеем.

Инерциальная система отсчета . Системы отсчёта, относительно которых свободное тело движется равномерно и прямолинейно, называются инерциальными.

Первый закон Ньютона – закон инерциальных систем . Первый закон Ньютона – это постулат о существовании инерциальных систем отсчёта. В инерциальных системах отсчёта механические явления описываются наиболее просто.

Второй закон динамики И. Ньютона . В инерциальной системе отсчёта прямолинейное и равномерное движение может происходить только в том случае, если на тело не действуют другие силы или действие их скомпенсировано, т.е. уравновешено. Демонстрируется видеопоказом с объяснениями.

Принцип суперпозиции сил . Демонстрируется видеопоказом с объяснениями.

Понятие массы тела . Масса – одна из самых фундаментальных физических величин. Масса характеризует сразу несколько свойств тела и обладает рядом важных свойств.

Сила - центральное понятие второго закона Ньютона . Второй закон Ньютона определяет, что тело тогда будет двигаться с ускорением, когда на него действует сила. Сила – мера взаимодействия двух (или больше) тел.

Два вывода классической механики из второго закона И. Ньютона:

1. Ускорение тела напрямую связано с приложенной к телу силой.

2. Ускорение тела напрямую связано с его массой.

Демонстрация прямой зависимости ускорения тела от его массы

Третий закон динамики И. Ньютона . Демонстрируется видеопоказом с объяснениями.

Значение законов классической механики для современной физики . Механика, основанная на законах Ньютона, называется классической механикой. В рамках классической механики хорошо описывается движение не очень маленьких тел с не очень большими скоростями.

Демонстрации:

Физические поля вокруг элементарных частиц.

Планетарная модель атома Резерфорда и Бора.

Движение, как физическое явление.

Поступательное движение.

Равномерное прямолинейное движение

Неравномерное относительное механическое движение.

Видеоанимация системы отсчета.

Криволинейное движение.

Путь и траектория.

Ускорение.

Инерция покоя.

Принцип суперпозиции.

2-й закон Ньютона.

Динамометр.

Прямая зависимость ускорения тела от его массы.

3-й закон Ньютона.

Контрольные вопросы:.

    Сформулируйте определение и научный предмет физики.

    Сформулируйте физические свойства, общие для всех явлений природы.

    Сформулируйте основные этапы эволюции физической картины мира.

    Назовите 2 основных принципа современной науки.

    Назовите особенности механистической модели мира.

    В чем суть молекулярно-кинетической теории.

    Сформулируйте основные признаки электромагнитной картины мира.

    Объясните понятие физического поля.

    Определите признаки и различия электрического и магнитного полей.

    Объясните понятия электромагнитного и гравитационного полей.

    Объясните понятие «Планетарная модель атома»

    Сформулируйте признаки современной физической картины мира.

    Сформулируйте основные положения современной физической картины мира.

    Объясните значение теории относительности А. Эйнштейна.

    Объясните понятие: «Механика».

    Назовите основные разделы механики и дайте им определения.

    Назовите основные физические характеристики движения.

    Сформулируйте признаки поступательного механического движения.

    Сформулируйте признаки равномерного и неравномерного механического движения.

    Сформулируйте признаки относительности механического движения.

    Объясните смысл физических понятий: «Точка отсчёта и система отсчёта в механическом движении».

    Назовите основные характеристики механического движения в системе отсчета.

    Назовите основные характеристики траектории прямолинейного движения.

    Назовите основные характеристики криволинейного движения.

    Дайте определение физическому понятию: «Путь».

    Дайте определение физическому понятию: «Скалярная величина».

    Воспроизведите физические формулы и единицы измерения характеристик механического движения.

    Сформулируйте физический смысл понятия: «Ускорение».

    Воспроизведите физическую формулу для определения величины ускорения.

    Назовите две фундаментальные задачи, решенные физикой И. Ньютона.

    Воспроизведите основные смыслы и содержание первого закона динамики И. Ньютона.

    Сформулируйте физический смысл понятия инерции и инертности тела.

    В чем проявилось развитие Ньютоном теории механики Галилея.

    Сформулируйте физический смысл понятия: «Инерциальная система отсчета».

    Почему первый закон Ньютона это закон инерциальных систем.

    Воспроизведите основные смыслы и содержание второго закона динамики И. Ньютона.

    Сформулируйте физические смыслы принципа суперпозиции сил, выведенного И. Ньютоном.

    Сформулируйте физический смысл понятия массы тела.

    Обоснуйте, что сила является центральным понятием второго закона Ньютона.

    Сформулируйте два вывода классической механики на основании второго закона И. Ньютона.

    Воспроизведите основные смыслы и содержание третьего закона динамики И. Ньютона.

    Объясните значение законов классической механики для современной физики.

Литература:

1. Ахмедова Т.И., Мосягина О.В. Естествознание: Учебное пособие / Т.И. Ахмедова, О.В. Мосягина. – М.: РАП, 2012. – С. 34-37.

Что такое точка отсчета? Что такое механическое движение?

Andreus-папа-ndrey

Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики. Раздел механики, описывающий геометрические свойства движения без учёта причин, его вызывающих, называется кинематикой

В более общем значении движением называется любое пространственное или временное изменение состояния физической системы. Например, можно говорить о движении волны в среде.

* Движение материальной точки полностью определяется изменением её координат во времени (например, двух на плоскости) . Изучением этого занимается кинематика точки.
o Прямолинейное движение точки (когда она всегда находится на прямой, скорость параллельна эта прямой)
o Криволинейное движение это движение точки по траектории, не представляющей собою прямую, с произвольным ускорением и произвольной скоростью в любой момент времени (например, движение по окружности) .
* Движение твёрдого тела складывается из движения какой-либо его точки (например, центра масс) и вращательного движения вокруг этой точки. Изучается кинематикой твёрдого тела.
o Если вращение отсутствует, то движение называется поступательным и полностью определяется движением выбранной точки. Заметим, что при этом оно не обязательно является прямолинейным.
o Для описания вращательного движения - движения тела относительно выбранной точки, например закреплённого в точке, используют Углы Эйлера. Их количество в случае трёхмерного пространства равно трём.
o Также для твёрдого тела выделяют плоское движение - движение, при котором траектории всех точек лежат в параллельных плоскостях, при этом оно полностью определяется одним из сечений тела, а сечение тела положением любых двух точек.
* Движение сплошной среды. Здесь предполагается, что движение отдельных частиц среды довольно независимо друг от друга (обычно ограничено лишь условиями непрерывности полей скорости) , поэтому число определяющих координат бесконечно (неизестными становятся функции) .
Относительность - зависимость механического движения тела от системы отсчёта, не указав систему отсчёта - не имеет смысла говорить о движении.

Даниил юрьев

Виды механического движения [править | править вики-текст]
Механическое движение можно рассматривать для разных механических объектов:
Движение материальной точки полностью определяется изменением её координат во времени (например, для плоскости - изменением абсциссы и ординаты). Изучением этого занимается кинематика точки. В частности, важными характеристиками движения являются траектория материальной точки, перемещение, скорость и ускорение.
Прямолинейное движение точки (когда она всегда находится на прямой, скорость параллельна этой прямой)
Криволинейное движение - движение точки по траектории, не представляющей собою прямую, с произвольным ускорением и произвольной скоростью в любой момент времени (например, движение по окружности).
Движение твёрдого тела складывается из движения какой-либо его точки (например, центра масс) и вращательного движения вокруг этой точки. Изучается кинематикой твёрдого тела.
Если вращение отсутствует, то движение называется поступательным и полностью определяется движением выбранной точки. Движение при этом не обязательно является прямолинейным.
Для описания вращательного движения - движения тела относительно выбранной точки, например закреплённого в точке, - используют Углы Эйлера. Их количество в случае трёхмерного пространства равно трём.
Также для твёрдого тела выделяют плоское движение - движение, при котором траектории всех точек лежат в параллельных плоскостях, при этом оно полностью определяется одним из сечений тела, а сечение тела - положением любых двух точек.
Движение сплошной среды. Здесь предполагается, что движение отдельных частиц среды довольно независимо друг от друга (обычно ограничено лишь условиями непрерывности полей скорости), поэтому число определяющих координат бесконечно (неизвестными становятся функции).

Механическое движение. Путь. Скорость. Ускорение

Лара

Механическим движением называют изменение положения тела (или его частей) относительно других тел.
Положение тела задается координатой.
Линию, вдоль которой движется материальная точка, называют траекторией. Длину траектории называют путем. Единица пути - метр.
Путь = скорость* время. S=v*t.

Механическое движение характеризуется тремя физическими величинами: перемещением, скоростью и ускорением.

Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называется перемещением (s). Перемещение - величина векторная. Единица перемещения - метр.

Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка времени.
Формула скорости имеет вид v = s/t. Единица скорости - м/с. На практике используют единицу измерения скорости км/ч (36 км/ч = 10 м/с) .

Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Формула для вычисления ускорения: a=(v-v0)/t; Единица ускорения – метр/(секунда в квадрате) .

ОПРЕДЕЛЕНИЕ

Механическое движение называют изменение положения тела в пространстве с течением времени относительно других тел.

Исходя из определения, факт движения тела можно установить, сравнивая его положения в последовательные моменты времени с положением другого тела, которое называется телом отсчета.

Так, наблюдая плывущие по небу облака, можно сказать, что они изменяют свое положение относительно Земли. Шарик, который катится по столу, изменяет свое положение относительно стола. В движущемся танке гусеницы перемещаются и относительно Земли, и относительно корпуса танка. Жилое здание находится в покое относительно Земли, но изменяет свое положение относительно Солнца.

Рассмотренные примеры позволяют сделать важный вывод о том, что одно и то же тело может одновременно совершать разные движения относительно других тел.

Виды механического движения

Простейшими видами механического движения тела конечных размеров являются поступательное и вращательное движения.

Движение называется поступательным, если прямая, соединяющая две точки тела, перемещается, оставаясь параллельной самой себе (рис.1,а). При поступательном движении все точки тела движутся одинаково.

При вращательном движении все точки тела описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей при этом лежат на одной прямой, которая называется осью вращения. Точки тела, лежащие на оси окружности остаются неподвижными. Ось вращения может располагаться как внутри тела (ротационное вращение) (рис.1,б), так и за его пределами (орбитальное вращение) (рис.1,в).

Примеры механического движения тел

Поступательно движется автомобиль на прямолинейном участке дороги, при этом колеса автомобиля совершают вращательное ротационное движение. Земля, обращаясь вокруг Солнца, совершает вращательное орбитальное движение, а вращаясь вокруг своей оси – вращательное ротационное движение. В природе обычно мы встречаемся со сложными комбинациями различных видов движения. Так, футбольный мяч, летящий в ворота, одновременно совершает поступательно и вращательное движение. Сложное движение совершают части различных механизмов, небесные тела и т.д.

Что такое механическое движение и чем оно характеризуется? Какие параметры вводятся для понимания этого вида движения? Какими терминами при этом чаще всего оперируют? В данной статье мы ответим на эти вопросы, рассмотрим механическое движение с разных точек зрения, приведем примеры и займемся решением задач из физики соответствующей тематики.

Основные понятия

Еще со школьной скамьи нас учат тому, что механическое движение представляет собой изменение положения тела в любой момент времени относительно других тел системы. На самом деле все так и есть. Давайте примем обыкновенный дом, в котором мы находимся, за ноль координатной системы. Представьте визуально, что дом будет началом координат, а из него в любых направлениях будет выходить ось абсцисс и ось ординат.

В таком случае наше движение в пределах дома, а также за его пределами будет наглядно демонстрировать механическое движение тела в системе отсчета. Представьте, будто точка перемещается по системе координат, в каждый момент времени изменяя свою координату относительно как оси абсцисс, так и относительно оси ординат. Все будет просто и понятно.

Характеристика механического движения

Каким же может быть такой тип движения? Сильно углубляться в дебри физики мы не будем. Рассмотрим простейшие случаи, когда происходит движение материальной точки. Оно подразделяется на прямолинейное движение, а также на криволинейное движение. В принципе, из названия все уже должно быть понятно, но давайте на всякий случай поговорим об этом конкретнее.

Прямолинейным движением материальной точки будет называться такое движение, которое осуществляется по траектории, имеющий вид прямой линии. Ну, например, машина едет прямо под дороге, которая не имеет поворотов. Или по участку подобной дороги. Вот это и будет прямолинейное движение. При этом оно может быть равномерным или равноускоренным.

Криволинейным движением материальной точки будет называться такое движение, которое осуществляется по траектории, которая не имеет вид прямой линии. Траектория может представлять собой ломанную линию, а также замкнутую линию. То есть круговая траектория, эллипсоидная и так далее.

Механическое движение населения

Этот вид движения не имеет практически абсолютно никакого отношения к физике. Хотя, смотря с какой точки зрения мы его воспринимаем. Что, вообще, называется механическим движением населения? Им называется переселение индивидуумов, которое происходит в результате проведения миграционных процессов. Это может быть как внешняя, так и внутренняя миграция. По продолжительности механическое движение населения подразделяется на постоянное и временное (плюс маятниковое и сезонное).

Если мы будем рассматривать этот процесс с физической точки зрения, то можно сказать только одно: это движение будет прекрасно демонстрировать движение материальных точек в системе отсчета, связанной с нашей планетой - Землей.

Равномерное механическое движение

Как ясно из названия, это такой тип движения, при котором скорость тела имеет определенное значение, сохраняемое постоянным по модулю. Иными словами, скорость тела, которое движется равномерно, не изменяется. В реальной жизни мы практически не можем заметить идеальных примеров равномерного механического движения. Вы можете вполне резонно возразить, мол, можно ехать на автомобиле со скоростью 60 километров в час. Да, безусловно, спидометр транспортного средства может демонстрировать подобное значение, но это не означает, что на самом деле скорость автомобиля будет равной именно шестидесяти километрам в час.

О чем идет речь? Как мы знаем, во-первых, все измерительные приборы имеют определенную погрешность. Линейки, весы, механические и электронные приборы - у всех у них есть определенная погрешность, неточность. Вы можете сами убедиться в этом, взяв с десяток линеек и приложив их одна к другой. После этого вы сможете заметить некоторые несовпадения между миллиметровыми отметками и их нанесением.

То же самое касается и спидометра. Он имеет определенную погрешность. У приборов неточность численно равна половине цены деления. В автомобилях неточность спидометра будет составлять 10 километров в час. Именно поэтому в определенный момент нельзя точно сказать, что мы движемся с той или иной скоростью. Вторым фактором, который будет вносить неточность, будут силы, действующие на автомобиль. Но силы неразрывно связаны с ускорением, поэтому на эту тему мы поговорим несколько позже.

Очень часто равномерное движение встречается в задачах математического характера, нежели физического. Там мотоциклисты, грузовые и легковые автомобили движутся с одной и той же скоростью, равной по модулю в разные моменты времени.

Равноускоренное движение

В физике такой вид движения встречается достаточно часто. Даже в задачах части “А” как 9-ого, так и 11-ого класса встречаются задания, в которых нужно уметь производить операции с ускорением. Например, “А-1”, где нарисован график движения тела в координатных осях и требуется вычислить, какое расстояние автомобиль прошел за тот или иной промежуток времени. Причем один из промежутков может демонстрировать равномерное движение, в то время как на втором необходимо вычислить сначала ускорение и только потом считать пройденное расстояние.

Как же узнать, что движение равноускоренное? Обычно в задачах информация об этом подается напрямую. То есть имеется либо численное указание ускорения, либо даются параметры (время, изменение скорости, дистанция), которые позволяют нам определить ускорение. Следует отметить, что ускорение - векторная величина. А значит она может быть не только положительной, но и отрицательной. В первом случае мы будем наблюдать ускорение тела, во втором - его торможение.

Но бывает, что информация о типе движения ученику преподается в несколько скрытной, если ее можно так назвать, форме. Например, говорится, что на тело ничего не действует или сумма всех сил равна нулю. Ну что же, в этом случае нужно четко понимать, что речь идет о равномерном движении либо о покое тела в определенной системе координат. Если вы вспомните второй закон Ньютона (в котором говорится о том, что сумма всех сил есть не что иное, как произведение массы тела на ускорение, сообщаемое под действием соответствующих сил), то легко заметите одну интересную вещь: если сумма сил равна нулю, то произведение массы на ускорение также будет равно нулю.

Вывод

Но ведь масса - это у нас величина постоянная, и она априори не может быть нулевой. В таком случае логичным будет вывод о том, что при отсутствии действия внешних сил (или при их компенсированном действии) ускорение у тела отсутствует. Значит, оно либо покоится, либо движется с постоянной скоростью.

Формула равноускоренного движения

Иногда встречается в научной литературе подход, согласно которому сначала даются легкие формулы, а потом с учетом некоторых факторов они усложняются. Мы сделаем все наоборот, а именно, рассмотрим сначала равноускоренное движение. Формула, согласно которой вычисляется пройденная дистанция, выглядит следующим образом: S = V0t + at^2/2. Здесь V0 - начальная скорость тела, a - ускорение (может быть отрицательным, тогда знак + изменится в формуле на -), а t - время, прошедшее с начала движения до остановки тела.

Формула равномерного движения

Если же мы будем говорить о равномерном движении, то вспомним, что при этом ускорение равно нулю (a = 0). Подставим ноль в формулу и получим: S = V0t. Но ведь скорость на всем участке пути у нас постоянна, если говорить грубо, то есть придется пренебречь силами, действующими на тело. Что, кстати, в кинематике практикуется повсеместно, поскольку кинематика не изучает причины возникновения движения, этим занимается динамика. Так вот, если скорость на всем участке пути у нас постоянна, то ее начальное значение совпадает с любым промежуточным, а также конечным. Поэтому формула расстояния будет выглядеть следующим образом: S = Vt. Вот и все.



Статьи по теме: