Конспект урока "Электронные пучки. Электронно-лучевая трубка". Основные физические характеристики электронного пучка

Электронный пучок –это направленный поток электронов. Можно, например, получить электронный пучок из электронной лампы. Для этого необходимо сделать в аноде отверстие. Часть электронов ускоренных электрическим полем будут попадать в это отверстие и создавать за анодом электронный пучок. Причем мы сожжем даже управлять количеством электронов в этом пучке. Для этого надо будет поставить между катодом и анодом дополнительный электрод, потенциал которого мы будем изменять.

Основные свойства электронного пучка

  • При попадании пучка электронов на поверхность какого-либо тела, он будет вызывать нагревание этого тела.Это свойство электронных пучков широко используется для электронной плавки сверхчистых металлов.
  • Получение рентгеновского излучения, которое будет возникать приторможении быстрых электронов. Это свойство широко используется в рентгеновских трубах и аппаратах, сделанных на их основе.
  • При попадании пучка электронов на некоторые вещества, например, стекло, они начинают светиться. Этиматериалы получили название люминофоров.
  • Электронные пучки будут отклоняться электрическим полем. Если, например, мы пустим пучок электронов между пластинами конденсатора, электроны будут отклоняться от отрицательно заряженной пластины.
  • Электронный пучок отклоняется под действием магнитного поля. Если пустить пучок электронов над северным полюсом магнита, то он отклонится в левую сторону, а если над южным – в правую сторону. Именно поэтому полярное сияние можно наблюдать толькоу полюсов Земли.

Последние три свойства электронного пучка нашли применение в электронно-лучевой трубке.

Электронно-лучевая трубка

Общий вид и устройство электронно-лучевой трубки представлены на следующем рисунке:

картинка

В узком краю ЭЛТ расположена электронная пушка. Она состоит из катода и анода и является источником пучка электронов. В электронной пушке пучок электронов разгоняется до нужной скорости. Помимо этого, в электронной трубке пучок электронов фокусируется таким образом, чтобы площадь его поперечного сечения была почти точечных размеров.

После того, как пучок вылетает из электронной пушки он последовательно проходит через две пары управляющих пластин. Они способствуют изменению направления пучка. Если на них нет разности потенциалов, то пучок будет направлен в середину экрана. Если мы подадим напряжение на вертикально расположенные пластины, пучок сместится в горизонтальном направлении на некоторый угол. Если мы подадим напряжение на горизонтально расположенные пластины, соответственно, пучок сместится в вертикальном направлении. Таким образом, используя две пары пластин, мы можем добиться смещение луча в любую точку экрана.


Электронные пучки представляют собой направленные потоки быстро движущихся электронов; поперечные размеры пучков обычно значительно меньше их длины. Электронные пучки впервые были обнаружены в газовом разряде, происходящем при пониженном давлении: наблюдались слабое голубое свечение вдоль оси газоразрядной трубки и флуоресценция стеклянных стенок трубки, которые объяснялись воздействием так называемых к а- тодных лучей (опыты английского физика У. Крук- са). Дальнейшие исследования привели к открытию электрона (английский физик Дж. Томсон, 1897 г.), а сами лучи были отождествлены с потоками электронов.
В настоящее время электронные пучки образуются в электронно-вакуумных приборах, использующих явление термоэлектронной эмиссии. Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в отверстие, образуя за анодом электронный пучок. Количеством электронов в пучке можно управлять, поместив между катодом и анодом дополнительный электрод и изменяя его потенциал. Электронные пучки имеют ряд свойств, благодаря которым они находят широкое практическое применение.
Свойства электронных пучков и их применение
Электронные пучки обладают энергией. Попадая на тела, они вызывают их нагревание. В современной технике это свойство используют для электронной плавки сверхчистых металлов в вакууме.
При попадании на пластинку из металла большой плотности (вольфрама, платины) электронные пучки тормозятся, вследствие чего возникает рентгеновское излучение. Это свойство используют в рентгеновских трубках, о чем будет рассказано в дальнейшем.
Некоторые вещества (стекло, сульфиды цинка и кадмия), бомбардируемые электронами, светятся. В настоящее время среди материалов этого типа (люминофоров) применяются такие, у которых в световую энергию превращается до 25% энергии электронного пучка.
Электронные пучки отклоняются электрическим полем. Например, проходя между пластинами заряженного конденсатора, электроны отклоняются от отрицательно заряженной пластины к положительно заряженной (рис. 3.39).
Электронные пучки отклоняются также в магнитном поле. Пролетая над северным полюсом магнита, электроны отклоняются влево, а пролетая над южным полюсом -^вправо (рис. 3.40). Отклонение электронных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что свечение газов верхних слоев атмосферы (полярные сияния) наблюдается только у полюсов.

Рис. 3.40
Рис. 3.39
Возможность управления электронным пучком с помощью электрического или магнитного поля и свечение под действием пучка покрытого люминофором экрана находит применение в электронно-лучевой трубке.
Электронно-лучевая трубка
Устройство электронно-лучевой трубки показано на рисунке 3.41. Трубка представляет собой вакуумный баллон, изго-товленный в виде колбы, расширенной с одной стороны. Расширенное дно колбы покрыто люминофором и образует экран трубки. В узком конце трубки помещен источник быстрых электронов - электронная пушка (рис. 3.42). Она состоит из накаливаемого оксидного катода К и трех коаксиальных цилиндров: управляющего электрода (сетки) М, первого анода Ах и второго анода А2.
Электроны испускаются нагретым оксидным слоем торца цилиндрического катода и проходят через отверстие в ци-линдрическом управляющем электроде. Управляющий электрод имеет отрицательный потенциал относительно катода (-20...-70 В) и сжимает своим полем выходящий из катода электронный пучок. Изменяя этот потенциал, можно изменять количество электронов в пучке, т. е. его интенсивность.
Каждый анод состоит из дисков с небольшими отверстиями, вставленных в металлический цилиндр. Потенциал первого анода положителен относительно катода, а потенциал второго анода положителен относительно первого анода. Электрические поля между электродом М и анодом Ау, а также между анодами Ах и А2, ускоряющие электроны, показаны на рисунке 3.42 при помощи эквипотенциальных поверхностей. Форма, расположение и потенциалы анодов выбраны так, чтобы наряду с ускорением электронов происходила и фо-кусировка электронного пучка, т. е. уменьшение площади его
Вертикально отклоняющие

пластины Рис. 3.41

поперечного сечения. На экране, в том месте, куда попадает электронный пучок (узко сфокусированный электронный пучок иногда называют электронным лучом), возникает свечение.
После электронной пушки сфокусированный электронный пучок на пути к экрану проходит последовательно между двумя парами управляющих пластин, подобных пластинам плоского конденсатора. Если электрического поля между пластинами нет, то пучок не отклоняется и светящаяся точка распо-лагается в центре экрана. При сообщении разности потенциалов вертикально расположенным пластинам пучок смещается в горизонтальном направлении, а при сообщении разности потенциалов горизонтальным пластинам он смещается в вертикальном направлении. Одновременное использование двух пар пластин позволяет перемещать светящуюся точку по экрану в любом направлении.
Малая масса электронов в электронном пучке обеспечивает малую инерционность электронно-лучевой трубки: электронный пучок практически мгновенно реагирует на изменение напряжения на управляющих пластинах. На этом свойстве электронных пучков основано использование электронно-лучевой трубки в электронном осциллографе - приборе, который применяется для исследования быстропеременных процессов в электрических цепях.
В электронно-лучевой трубке, применяемой в телевизоре (так называемом кинескопе), управление электронным пучком осуществляется с помощью магнитного поля. Это поле создают катушки, надетые на горловину трубки.
Дисплей
Широкое применение имеют электронно-лучевые трубки в присоединяемых к электронно-вычислительным машинам (ЭВМ) устройствах - дисплеях. На экран дисплея, подобный экрану телевизора, поступает информация, записанная и пе-реработанная ЭВМ. Можно непосредственно видеть текст на любом языке, графики различных процессов, изображения реальных объектов, а также воображаемые объекты, подчиняющиеся законам, записанным в программе ЭВМ.
В электронно-лучевых трубках формируются узкие элек-тронные пучки, управляемые электрическими и магнит-ными полями. Эти пучки используются в осциллографах, кинескопах телевизоров, дисплеях ЭВМ.

>>Физика: Электронные пучки. Электронно-лучевая трубка

Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в это отверстие, образуя за анодом электронный пучок. Количеством электронов в пучке можно управлять, поместив между катодом и анодом дополнительный электрод и изменяя его потенциал.
Свойства электронных пучков и их применение. Электронный пучок, попадая на тела, вызывает их нагревание. В современной технике это свойство используют для электронной плавки в вакууме сверхчистых металлов.
При торможении быстрых электронов, попадающих на вещество, возникает рентгеновское излучение . Это явление используют в рентгеновских трубках.
Некоторые вещества (стекло, сульфиды цинка и кадмия), бомбардируемые электронами, светятся. В настоящее время среди материалов этого типа (люминофоров) применяются такие, у которых в световую энергию превращается до 25% энергии электронного пучка.
Электронные пучки отклоняются электрическим полем . Например, проходя между пластинами конденсатора, электроны отклоняются от отрицательно заряженной пластины к положительно заряженной (рис.16.20 ).
Электронный пучок отклоняет ся также в магнитном поле . Пролетая над северным полюсом магнита, электроны отклоняются влево, а пролетая над южным, отклоняются вправо (рис.16.21 ). Отклонение электронных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что свечение газов верхних слоев атмосферы (полярное сияние) наблюдается только у полюсов.

Возможность управления электронным пучком с помощью электрического или магнитного поля и свечение покрытого люминофором экрана под действием пучка применяют в электронно-лучевой трубке.
Электронно-лучевая трубка - основной элемент одного из типов телевизоров и осциллографа - прибора для исследования быстропеременных процессов в электрических цепях (рис.16.22 ).

Устройство электронно-лучевой трубки показано на рисунке 16.23. Эта трубка представляет собой вакуумный баллон, одна из стенок которого служит экраном. В узком конце трубки помещен источник быстрых электронов - электронная пушка (рис.16.24 ). Она состоит из катода, управляющего электрода и анода (чаще несколько анодов располагаются друг за другом). Электроны испускаются нагретым оксидным слоем с торца цилиндрического катода С , окруженного теплозащитным экраном Н . Далее они проходят через отверстие в цилиндрическом управляющем электроде В (он регулирует число электронов в пучке). Каждый анод (А 1 и А 2 ) состоит из дисков с небольшими отверстиями. Эти диски вставлены в металлические цилиндры. Между первым анодом и катодом создается разность потенциалов в сотни и даже тысячи вольт. Сильное электрическое поле ускоряет электроны, и они приобретают большую скорость . Форма, расположение и потенциалы анодов выбирают так, чтобы наряду с ускорением электронов осуществлялась и фокусировка электронного пучка, т. е. уменьшение площади поперечного сечения пучка на экране почти до точечных размеров.

На пути к экрану пучок последовательно проходит между двумя парами управляющих пластин, подобных пластинам плоского конденсатора (см. рис. 16.23). Если электрического поля между пластинами нет, то пучок не отклоняется и светящаяся точка располагается в центре экрана. При сообщении разности потенциалов вертикально расположенным пластинам пучок смещается в горизонтальном направлении, а при сообщении разности потенциалов горизонтальным пластинам он смещается в вертикальном направлении.
Одновременное использование двух пар пластин позволяет перемещать светящуюся точку по экрану в любом направлении. Так как масса электронов очень мала, то они почти мгновенно, т. е. за очень короткое время, реагируют на изменение разности потенциалов управляющих пластин.
В электронно-лучевой трубке, применяемой в телевизоре (так называемом кинескопе), управление пучком, созданным электронной пушкой, осуществляется с помощью магнитного поля. Это поле создают катушки, надетые на горловину трубки (рис.16.25 ).

Цветной кинескоп содержит три разнесенные электронные пушки и экран мозаичной структуры, составленный из люминофоров трех типов (красного, синего и зеленого свечения). Каждый электронный пучок возбуждает люминофоры одного типа, свечение которых в совокупности создает на экране цветное изображение.
Широкое применение электронно-лучевые трубки находят в дисплеях - устройствах, присоединяемых к электронно-вычислительным машинам (ЭВМ). На экран дисплея, подобный экрану телевизора, поступает информация, записанная и переработанная ЭВМ . Можно непосредственно видеть текст на любом языке, графики различных процессов, изображения реальных объектов, а также воображаемые объекты, подчиняющиеся законам, записанным в программе вычислительной машины.
В электронно-лучевых трубках формируются узкие электронные пучки, управляемые электрическими и магнитными полями. Эти пучки используются в осциллографах, кинескопах телевизоров, дисплеях ЭВМ.

???
1. Как осуществляется управление электронными пучками?
2. Как устроена электронно-лучевая трубка?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Параметры электронных пучков

На рисунке изображена схема источника электронов, пред-

установках. Электроны вытягиваются из катода, если на

Кроссо́вер (англ. crossover, сокр. х-over , буквальнопереходное или согласующее устройство, пограничное или переходное явление, пересечение и т. п.) - собирательное название, относящееся к различным понятиям и предметам:

Кроссовер - точка минимального сечения электронного пучка в электронной пушке,электронном микроскопе.

сти катода, а радиусом кроссовера r c , который может быть

На рисунке приведена схема источника и траектории элек-

Для определения радиуса кроссовера r c пучка электронов, эмитированных с катода с начальной скоростью vo (соответствующей энергии eVo) используется соотношение:

Получаем

Из этого равенства видно, что в первом приближении радиус кроссовера не зависит от площади эмитирующей поверхности катода и определяется только отношением начальной энергии электронов eVo к энергии электронов в области кроссовера eV.

Это выражение было получено в предположении, что все эмитируемые катодом электроны имеют одну и ту же начальную энергию eVo, в результате чего кроссовер обладает четко

Магнитные линзы

в которой с помощью кольцевого магнита создается аксиально-симметричное магнитное поле. Различают два типа магнитных линз – длинные и короткие.

Примером диной магнитной линзы является длинный соленоид. На электрон в магнитном поле действует сила Лоренца, направление действия ее перпендикулярно как направлению скорости электрона, так и вектору напряженности магнитного поля. Благодаря этому движение электрона внутри длинного соленоида происходит по спирали, описывая в плоскости, проходящей через ось Z синусоиду (рисунок).

Где ω = 2π/T= eH/2m.

Если скорости электронов, попадающих в соленоид, близки, то продольное равномерное магнитное поле фокусирует поток электронов в точках, соответствующих равенству

Z= n T v o /2 = n2πmv o /eH,

Где v o – скорость электронов, входящих в соленоид; n – ряд простых целых чисел.

Основные особенности фокусировки в длинной магнитной линзе:

1. Фокусировка получаетсч не в одной, а в нескольких равноотстоящих друг от друга точках.

2. Пучок электронов, движущихся параллельно оси не фокусируется, т.е. диаметр этого пучка не может быть уменьшен.

Длинные магнитные линзы (соленоид с равномерным полем) на практике применяются для переноса изображения.

Гораздо более широкое применение нашли тонкие магнитные линзы. Фокусирующее действие тонкой магнитной линзы является более сложным из-за неоднородности магнитного поля, в котором можно выделить тангенциальную и радиальную составляющие. Для построения траектории электрона в этом случае необходимо знать величину начальной скорости электрона и распределение напряженности магнитного поля вдоль оси катушки.

При получении изображения при помощи тонких (коротких) магнитных линз происходит поворот изображения относительного объекта. Фокусирующее действие магнитной линзы тем больше, чем больше напряженность магнитного поля и уже область, в которой оно сосредоточено. Поэтому на практике магнитные линзы оформляются в виде катушек с панцирем (рисунок).

Короткая магнитная линза позволяет получать увеличенные или уменьшенные изображения. Т.е. пригодна для использования в электронном микроскопе. Короткая линза фокусирует и параллельный оси поток электронов.

Напряженность поля на оси короткой магнитной линзы может быть найдена из выражения:

R – средний радиус катушки; J- сила протекающего тока; Z – расстояние по оси катушки

Магнитные линзы могут быть только фокусирующими. Так как магнитное поле действует только на движущиеся электроны, то магнитная линза должна находится в электрическом поле V. Фокусное расстояние тонкой магнитной линзы определяется выражением

Здесь Rm – средний радиус катушки магнита, n – число витков в катушке, i – ток через катушку.

В магнитной линзе происходит поворот изображения на угол ∆ф

ф= [ град.].

кие линзы называют продольными системами. В этих системах пучки электронов фокусируются малыми по сравнению с продольными поперечыми составляющими поля. Более эффективными оказываются поперечные системы, в которых силовые линии поля направлены поперек пучка. Поперечные электронно-оптические системы в последнее время стали широко использоваться, особенно для фокусировки частиц (сильная фокусировка)

тронно-оптические системы в последнее время стали широко использоваться, особенно для фокусировки частиц (сильная фокусировка).

Поперечные фокусирующие поля обычно создаются четыремя электродами либо четыремя магнитными катушками, расположенными вокруг оси системы. При этом находящиеся диаметрально противоположно электроды или магниты имеют одинаковую полярность, а соседние элементы – противоположную (см. рисунок) Такие четырехполюсные системы, имеющие по по две плоскости симметрии, называются квадрупольными линзами. Отличительной особенностью квадрупольных линз является то, что продольная составляющая поля в них отсутствует. Рассмотрим в качестве примера квадрупольную электростатическую линзу. Образованную че-

Уравнения 2.146 получены из 2.145 дифференцированием по Х или Y, отсюда и знаки.


Отклонение пучка заряженных частиц происходит в электрическом и магнитном полях. Причем в магнитном поле заряженная частица обязательно должна двигаться с конечной скоростью.

Отклонение круглого пучка частиц системой из двух электродов показано на рисунке 2.41. Простейшая система отклонения или развертки пучка предствляет собой набор электростатических отклоняющих пластин. Отклонение в электростатическом поле не зависит от величины отношения е/m и поэтому может использоваться как для электронов, так и для ионов.

В магнитных отклоняющих системах, где отклонение пропорционально скорости частиц (и, следовательно, отношению е/m), для отклонения ионов требуется очень сильное магнитное поле.

Угол отклонения можно получить в следующем виде

tgθ=(l /Vo)*(Vd/2*d)

Это обычное уравнение электростатического отклонения заряженных частиц (в данном случае электронов), проходящих между идеальными пластинами. Вместо l надо z

Здесь Vo - средний потенциал, подаваемый на пластины, Vd – сигнальный потенциал. Потенциал верхней пластины Vo + Vd/2, потенциал нижней пластины - Vo - Vd/2

В случае магнитного отклонения используются однородные взаимно перпендикулярные магнитные поля, создаваемые двумя парами обтекаемых током отклоняющих катушек.
Горизонтально расположенные катушки соединяются последовательно и по ним проходит ток, создающий магнитное поле c напряженностью Вl , под действием которого пучок будет перемещаться в вертикальной плоскости. Вертикально расположенные катушки также соединяются последовательно, и своим магнитным полем будут вызывать перемещение пучка по горизонтали.
Рассмотрим подробнее отклонение пучка магнитным полем. Будем считать, что магнитное поле, созданное парой катушек, однородно и имеет индукцию В . Ширина поля, пересекаемая электронным пучком, равна l .

Электроны, входя в поперечное магнитное поле, движутся по дуге окружности. Пройдя по дуге, пучок выходит из зоны магнитного поля под углом a к оси Z , а затем движется по прямой линии до экрана.

Центральной частью любого спектрометра является энергоанализатор – устройство, позволяющее измерять число электронов, обладающих энергиями, лежащими в заданном интервале. В энергоанализаторах используются физические принципы, связанные с отклонением заряженных частиц в электростатическом или магнитном поле.

Наибольшее распространение в электронных спектрометрах получил энергоанализатор типа цилиндрическое зеркало Анализатор этого типа состоит из двух коаксиальных полых металлических цилиндров (рис. 6.4.). Во внутреннем цилиндре A имеются узкие прорези S 1 и S 2 для прохождения входящих и выходящих электронов соответственно. К внешнему цилиндру B прикладывается отрицательный по отношению к внутреннему цилиндру потенциал V ab . В пространстве между цилиндрами электростатическое поле изменяется обратно пропорционально радиусу r :

здесь r a и r b – соответственно радиусы внутреннего и внешнего цилиндров.

Электроны, влетевшие в энергоанализатор от источника О с некоторой скоростью v 0 под углом влета θ , в результате отклонения от первоначальной траектории под действием электрического поля, будут двигаться по криволинейной траектории и сфокусируются на выходе в точке О 1 , в которой располагается коллектор электронов, например, электронный умножитель.

Наилучшая фокусировка электронного пучка в цилиндрическом зеркале достигается при угле влета электронов θ = 42° 18,5". В этом случае расстояние между точками О и О 1 , т.е. между образцом и детектором электронов L 0 = 6,12r a . Максимальное удаление электронов от оси анализатора r max =0,3L 0 .

В случае бесконечно узких входной и выходной щелей через энергоанализатор проходят лишь электроны со строго определенной энергией Е 0 . При конечной ширине щелей S 1 и S 2 Анализатор цилиндрическое зеркало будет пропускать электроны с с энергетическим разбросом δЕ . Две группы электронов равной интенсивности с некоторой средней энергией Е считаются разрешенными, если при их наложении результирующая кривая имеет минимум.

Уменьшить δЕ min можно уменьшением ширины щелей, однако при этом уменьшается чувствительность прибора, так как уменьшается доля электронов, достигающих детектора электронов. Улучшить разрешающую способность анализатора без ухудшения его параметров можно уменьшением энергии электронов Е , влетающих в анализатор. С этой целью перед входной щелью анализатора ставят замедляющие электроны сетки или систему электронных линз.

Промышленные анализаторы, достаточно хорошим разрешением, конструируют на базе двухпролетного АЦЗ, согласованным со сферическими сетками, осуществляющими предварительное торможение электронов (рис. 6.5). Двухпролетный анализатор, как это видно из рисунка, представляет собой два последовательных обычных АЦЗ. Для измерений с угловым разрешением может используется вращающаяся диафрагма, расположенная на входе электронов во второй каскад анализатора.

Наибольшее разрешение, сравнимым с АЦЗ, обладает концентрический полусферический анализатор (ПСА ). Анализатор этого типа состоит из двух сферических секторов с радиусами кривизны r a и r b (рис. 6.6). Электроны в этом случае движутся в поле сферического конденсатора:

где V ab – разность потенциалов между внешней и внутренней сферами.

В режиме фокусировки источник, находящийся в точке О и его изображение, которое расположено в точке О 1 , лежат на одной линии, проходящей через центр сфер .

Рассмотренные выше энергоанализаторы позволяют регистрировать электроны, обладающие энергиями, лежащими в заданном «окне». В энергоанализаторах этого типа электроны пропускаются через диспергирующее электростатическое поле и их отклонение от первоначальной траектории является функцией электрического поля, приложенного к электродам анализатора. Анализаторы, работающие на этом принципе называются дисперсионными . В электронной спектроскопии широкое применение находит также энергоанализатор с задерживающим полем (АЗП ) В этом энергоанализаторе используется тормозящее электростатическое поле, которое пропускает на коллектор только те электроны, кинетическая энергия которых превышает энергию задерживающего электрического поля.

Упругое рассеяние

При упругом рассеянии изменяется направление вектора скорости электрона, а ее величина и, следовательно, величина кинетической энергии фактически остается постоянной. Образцу при каждом акте упругого рассеяния передается энергия порядка 1 эВ, что пренебрежимо мало по сравнению с первоначальной энергией электронов в пучке (>1 кэВ). Характерная энергия электронов в пучке составляет 1…50 кэВ. Угол отклонения от направления падения может принимать значения в переделах от 0° вплоть до 180°, но его наиболее вероятное значение составляет по порядку величины единицы градусов. Упругое рассеяние происходит в результате столкновений электронов высокой энергии с ядрами атомов, частично экранированных связанными электронами. В результате упругих взаимодействий электрон может покинуть образец. Такой электрон называется отражённым. Экспериментально установлено, что доля отраженных электронов может достигать 30% от начального количества электронов пучка. Электроны пучка, которые вылетают с поверхности образца в качестве отражённых электронов, имеют меньшую энергию, чем до взаимодействия, так как проходят некоторое расстояние внутри твёрдого тела и они теряют энергию. Коэффициент отражения электронов прямо пропорционален атомному номеру материала мишени.

Угловое распределение упругорассеянных электронов можно рассчитать, используя резерфордовскую модель рассеяния с уче­том экранировки атома электронным облаком. Тогда плотность вероятности на расстоянии z от поверхности определяется соотношением

Здесь Н 0 =1 – вероятность нахождения электрона на поверхности образца, r 0 – радиус зондирующего пучка электронов, r – расстояние от оси пучка падающих электронов, z – глубина проникновения электронов, измеряемая вдоль оси пучка.

Из приведенной формулы следует, что при распространении пучка электронов в пленке он уширяется, что показано на рисунке.

Неупругое рассеяние

При неупругих взаи-модействиях траектория элек-трона изменяется мало, при этом происходит передача энергии твёрдому телу. Неупругие взаимодействия происходят, в основном, между электронами пучка и электронами образца. Благодаря неупругим взаимо-действиям возникают:

§ вторичные электроны

§ непрерывное рентгеновское излучение

§ характеристическое рентгеновское излучение

§ оже-электроны

§ колебания решётки (фононы)

§ электронные колебания (плазмоны)

§ электронно-дырочные пары

§ Катодолюминесценция

Рассмотрим эти явления подробнее:

Взаимодействие электрона пучка с твёрдым телом может привести к высвобождению слабо связанных электронов т.н. медленных вторичных электронов. Вторичными принято называть электроны, обладающие энергией до 50 эВ. Этот порог задан условно для того, чтобы различать вторичные и отражённые электроны. Большая часть вторичных электронов имеет энергию 3…5 эВ.

Чтобы вылететь из твердого тела, вторичные электроны должны преодолеть поверхностный потенциальный барьер. Поэтому только вторичные электроны, находящиеся в тонком приповерхностном слое (5…50 нм), могут покинуть образец. Следовательно, плотность и направление вторичных электронов зависит от рельефа поверхности.

Большой класс экспериментальных методов основан на регистрации сигналов, возникающих в процессе облучения исследуемого объекта электронным пучком.

Для корректной интерпретации получаемых данных необходимо понимание процессов взаимодействия электронов с исследуемыми объектами.

Электрон с высокой энергией претерпевает торможение в кулоновском поле атома. Потеря энергии электрона при таком торможении преобразуется в квант рентгеновского излучения, которое называется тормозным рентгеновским излучением. Так как энергетические потери электрона в процессе этого торможения могут принимать любые значения, то тормозное рентгеновское излучение образует непрерывный спектр с энергией от нуля до энергии электронов пучка.

Электрон, обладающий достаточно высокой энергией, при взаимодействии с атомом может вызвать освобождение сильно связанного электрона с внутренних оболочек, в результате чего атом оказывается ионизованным в высокоэнергетическом состоянии. Последующая релаксация этого возбуждённого состояния приводит к эмиссии характеристического рентгеновского излучения. На этом явлении основан рентгеноструктурноый анализ.

Образовавшийся квант излучения может провзаимодействовать с электроном внешней оболочки, не покинув атома (внутреннее преобразование). При этом другой электрон с внешней оболочки покидает атом. Такие электроны называются оже-электронами. Энергия таких оже-электронов составляет по порядку величины 100эВ-1кэВ. Эти электроны используется в оже- спектроскопии.

При бомбардировке электронным пучком диэлектрика или полупроводника электрон валентной зоны может быть переброшен в зону проводимости. Таким образом, образуется электронно­дырочная пара, которая может рекомбинировать. При этом энергия, будет излучена в виде кванта света. Это явление называется катодолюминесценцией. Генерируемые кванты света будут лежать в ультрафиолетовом, видимом или инфракрасном диапазоне в зависимости от ширины запрещенной зоны.

Значительная доля энергии, приносимой на образец электронным пучком, передаётся твёрдому телу в виде возбуждения колебаний решётки – фононов - нагрева образца (область с на рисунке).

Если коэффициент теплопроводности образца достаточно высокий, то образец нагревается незначительно - не более 10°С. В материалах с низкой теплопроводностью (или в тонких пленках на диэлектрических подложках) при высоких токах пучка (1 мкА) вследствие нагрева может происходить модификация микрообъёма образца (отжиг, изменение фазы, разрушение и т.д.). Нагрев в таких случаях может достигать от единиц до тысяч градусов. Однако при типовых режимах работы (токах зонда ~ 10 нА) изменение или разрушение исследуемого образца не наблюдается.

Потери энергии в тонких и толстых мишенях, обусловлен­ные неупругим рассеянием, реализуются как дискретные события, сопровождающиеся рождением вторичных электронов низких энергий (до 50 эВ).

В случае неупругого рассеяния угол рассеяния зависит от потери энергии падающего электрона.

В тонких пленках толщиной в несколько сотен нанометров падающий электрон претерпевает много столкновений, и накапливающееся в результате отклонение можно найти статистически, используя уравнение Больцмана.

Энергетический спектр вторичных электронов

Если энергия электронов достаточна для преодоления ими поверхностного потенциального барьера, то они покидают твердое тело и регистрируются как вторичные электроны. Вторичные электроны обладают энергиями от нуля до энергии первичных электронов.

Энергетическое распределение вторичных электронов имеет сложный характер и отражает разнообразные, сложные и часто связанные между собой процессы взаимодействия первичных электронов с твердым телом.

Энергетические спектры и угловое распределение вторичных электронов содержит достаточно полную информацию об основных микроскопических характеристиках, в основном поверхности и приповерхностного слоя твердого тела, - составе, структуре, электронном строении.

Реальный энергетиче­ский спектр, полученный экспериментально, зависит от условий эксперимента и может существенно отличаться по форме от изо­браженного на рисунке.

Схематически вид кривой распределения вторичных электронов по энергии представлен на Рисунке. Как показывают экспериментальные результаты, вид спектра вторичных электронов практически не меняется при изменении энергии первичных электронов. При энергии первичных электронов в интервале 100 эВ … 1000 эВ значительная доля в спектре приходится на медленные электроны (область а на рисунке) – эти электроны называют истинно вторичными электронами , так как эту группу составляют, в основном, электроны, выбитые из твердого тела пучком первичных электронов. Предполагается, что они возникают в результате каскадных процессов потери энергии первичными электронами.

Максимум спектра истинно вторичных электронов лежит в области 1 … 10 эВ, причем наблюдается периодическая зависимость положения этого максимума от атомного номера вещества твердого тела. При достаточно больших значениях энергии первичных электронов положение максимум не зависит от Ер, однако, при Ер<20 эВ он сдвигается в сторону меньших энергий. Если энергия первичных электронов не превышает работу выхода электронов, то спектр вторичных электронов состоит в основном из упруго отраженных электронов.

Область b на рисунке относится к не упруго отраженным электронам, число которых существенно не изменяется в зависимости от энергии.

В металлах и полупроводниках большая часть энергии, те­ряющейся в диапазоне b (из-за возбуждения электронов и иони­зационных потерь), передается электронам проводимости или валентным электронам путем индивидуального или коллектив­ного возбуждения.

При энергии, близкой к энергии первичных электронов Ер (область с), наблюдается узкий пик, соответствующий упруго отраженным электронам. Рисунок. Этот пик связан с электронами, отраженными от поверхности твердого тела без потерь энергии или с очень малыми потерями энергии.

Кроме двух достаточно больших по интенсивности пиков истинно вторичных и упруго отраженных электронов(области а и с), в спектре вторичных электронов в области b на бесструктурном фоне наблюдаются слабо выраженные максимумы. Положения некоторых из них (максимумы 1 на рисунке) не зависят от энергии первичных электронов

Эти пики соответствуют величине энергии, необходимой для иони­зации атомов, и поэтому соответствующие потери энергии зави­сят от атомного номера. В этих процессах первичным или вто­ричным электроном на внутренней оболочке создается дырка, которая затем заполняется либо электроном с соседней обо­лочки атома, либо валентным электроном – так называемый эффект Оже Механизм Оже ха­рактеризуется заполнением дырки одним электроном и эмис­сией второго электрона (оже-электрона)

Суть оже-процесса заключается в том, что на заполненный электронами уровень атома переходит электрон с внешней оболочки, а вся высвобождающаяся энергия передается электрону, находящемуся на другой орбите внешней оболочки. Этот электрон вылетает из образца с характерной энергией и называется оже-электроном. При этом энергия испущенного оже- электрона никак не зависит от энергии падающего электрона и полностью определяется спектром энергетических уровней в твердом теле.

Пики 1 обусловлены выходом с поверхности оже-электронов. Энергия оже-электронов лежит в диапазоне ≈ 50… 500 эВ. Изучение этой группы вторичных электронов лежит в основе метода электронной оже-спектроскопии (ЭОС). Минимальная площадь анализа ограничена диаметром электронного пятна и составляет величину до 10 нм В случае рентгеновского излучения (рентгеновской флуоресценции) вместо второго электрона испускается фотон.

Максимумы 2 смещаются синхронно с изменением энергии первичных электронов.

Группа максимумов 2, расположенная вблизи пика упруго отраженных электронов, соответствует первичным электронам, испытавшим дискретные потери энергии при взаимодействии с поверхностью.

Энергетические по­тери из-за возбуждения фононов в диапазоне с могут быть разрешены только при помощи наи­более совершенных анализаторов спектра

Узкий поток электронов называется электронным пучком. Электронный пучок, которым можно управлять, получают в электронно-лучевой трубке (рис. 93). Одной из ее составных частей является вакуумный стеклянный баллон (разрежение порядка 0,000001 мм рт. ст. ). Он с одного конца цилиндрический, а с другого - конусообразный и заканчивается выпуклым дном. На внутреннюю сторону дна баллона нанесен слой люминофора, у цоколя трубки расположен катод, при нагревании испускающий электроны. Катод находится в управляющем цилиндре, в торце которого имеется отверствие. Через него выходит электронный пучок. Действие управляющего цилиндра подобно действию сетки в триоде: изменением отрицательного потенциала управляющего цилиндра регулируют количество электронов в луче и тем самым меняют яркость свечения тех мест экрана, в которые попадает пучок электронов. За управляющим цилиндром расположены фокусирующий и ускоряющий аноды.

Между управляющим цилиндром и фокусирующим анодом находится неоднородное электрическое поле, эквипотенциальные поверхности которого имеют форму линзы А, называемую электростатической линзой (рис. 94). Эта линза фокусирует электронный пучок и сообщает электронам ускорение, после чего электронный пучок попадает в электростатическую линзу В между фокусирующим и ускоряющим анодами.

Возьмем электроны в точках 1 и 2. В них, как и в любых других точках, напряженность электрического поля перпендикулярна к эквипотенциальным поверхностям, а на заряд действуют силы F 1 и F 2 , противоположно направленные напряженности поля в данных точках. Составляющие этих сил F 1 " и F 2 " сообщают электронам ускорения вдоль оси цилиндров. Составляющая F" 1 отклоняет пучок вниз, а составляющая F" 2 - вверх.

Линза В сообщает дополнительное ускорение электронам и, кроме того, вызывает дополнительную фокусировку электронного пучка. Первую половину линзы электроны в пучке пролетают с меньшей средней скоростью, чем вторую (где она доходит до 10 4 км / сек ), поэтому отклонение пучка вниз больше, чем вверх. При отклонении к оси в верхней половине линзы пучок сужается. То же происходит и в ее нижней половине. Изменяя потенциал фокусирующего анода, меняют сходимость пучка и добиваются его фокусировки на экране. На пути к экрану электронный пучок проходит поочередно между двумя парами пластин, расположенных во взаимно перпендикулярных плоскостях и имеющих выводы наружу.

Катод, управляющий цилиндр, фокусирующий анод, ускоряющий анод образуют устройство, называемое электронной пушкой. Выясним, какие свойства электронного пучка использованы в электронно-лучевой трубке. Включив ее (рис. 95, а) и сфокусировав пучок на экран, увидим на нем светящуюся точку. Электронный пучок, падая на люминофор, вызывает его свечение. Это свойство и использовано для изготовления экранов в электронно-лучевых трубках, применяющихся в осциллографе, телевизоре, радиолокаторе.

Подключим выводы вертикальных пластин к источнику постоянного тока. По перемещению луча (светлой точки) по экрану видим, что луч отклонился в сторону пластинки с положительным потенциалом. При изменении полярности пластин изменяется и направление смещения луча в горизонтальной плоскости. При подключении к источнику тока горизонтальных пластин и при изменении полярности луч будет перемещаться в вертикальной плоскости. Если к вертикально расположенным пластинам приложить переменное напряжение, то пучок (а на экране светлая точка) под действием образовавшегося электрического поля начнет колебаться между пластинами в горизонтальном направлении (по оси X или оси времени t), а при подаче переменного напряжения на горизонтальные пластины будет колебаться в вертикальном направлении (по оси Y). Вследствие быстрого колебания светлой точки на экране получается светлая прямая линия.

Поднесем сбоку трубки дугообразный магнит. Видим, что точка электронного пучка сместилась к краю экрана. Поменяем местами полюсы магнита, светлая точка отклонилась по экрану в противоположную сторону. (Учитывая, что пучок - поток электронов, определите правилом левой руки направление отклонения пятна на экране.) Электронный пучок отклоняется электрическим и магнитным полями. Вследствие малой массы электрона электронный пучок практически безынерциален. Это дает возможность мгновенно его смещать.

В осциллографе на горизонтально расположенные пластины подается исследуемое напряжение (см. рис. 93), а на вертикальные - пилообразное напряжение развертки U paз от специального устройства (см. рис. 95, б). Увеличиваясь прямо пропорционально времени, пилообразное напряжение вызывает равномерное движение светлой точки на экране в горизонтальном направлении в течение времени t 1 , например слева направо. Затем оно за время t 2 очень быстро спадает до нуля. За время t 2 электронный луч возвращается в исходное положение, и процесс повторяется. На время обратного хода луча на управляющий цилиндр подается отрицательное запирающее напряжение, преграждающее доступ электронов к экрану осциллографа. Это дает возможность наблюдать на нем графическое изображение быстро протекающих периодических электрических процессов.

Имеются электронно-лучевые трубки с магнитными фокусировкой и отклоняющим устройством. Они применяются в качестве приемных телевизионных трубок (кинескопов). Их устройство проще электростатических.

Статьи по теме: