Ako riešiť zložité zlomkové racionálne nerovnosti. Riešenie celočíselných a zlomkových racionálnych nerovností

Intervalová metóda- Toto univerzálna metóda riešenia takmer všetkých nerovností, ktoré sa vyskytujú v školský kurz algebra. Je založená na nasledujúcich vlastnostiach funkcií:

1. Spojitá funkcia g(x) môže zmeniť znamienko iba v bode, v ktorom sa rovná 0. Graficky to znamená, že graf nepretržitá funkcia sa môže pohybovať z jednej polroviny do druhej iba vtedy, ak pretína os x (pamätáme si, že ordináta ktoréhokoľvek bodu ležiaceho na osi OX (os x) sa rovná nule, teda hodnote funkcie v tomto bode je 0):

Vidíme, že funkcia y=g(x) zobrazená na grafe pretína os OX v bodoch x= -8, x=-2, x=4, x=8. Tieto body sa nazývajú nuly funkcie. A v rovnakých bodoch funkcia g(x) mení znamienko.

2. Funkcia môže zmeniť aj znamienko na nulách menovateľa - najjednoduchší príklad dobre známa funkcia:

Vidíme, že funkcia mení znamienko v koreni menovateľa v bode , ale v žiadnom bode nezmizne. Ak teda funkcia obsahuje zlomok, môže zmeniť znamienko v koreňoch menovateľa.

2. Funkcia však nie vždy mení znamienko v koreni čitateľa alebo v koreni menovateľa. Napríklad funkcia y=x 2 nemení znamienko v bode x=0:

Pretože rovnica x 2 =0 má dva rovnaké korene x=0, v bode x=0 sa zdá, že sa funkcia zmení na 0 dvakrát. Takýto koreň sa nazýva koreň druhej násobnosti.

Funkcia zmení znamienko na nule čitateľa , ale nezmení znamienko na nule menovateľa: , keďže koreň je koreňom druhej násobnosti, teda párnej násobnosti:


Dôležité! V koreňoch párnej násobnosti funkcia nemení znamienko.

Poznámka! akýkoľvek nelineárne Nerovnice v kurzoch školskej algebry sa zvyčajne riešia pomocou metódy intervalov.

Ponúkam vám podrobnú, podľa ktorej sa môžete vyhnúť chybám, keď žiadne rozhodnutie lineárne nerovnosti .

1. Najprv je potrebné uviesť nerovnosť do formulára

P(x)V0,

kde V je znak nerovnosti:<,>,≤ alebo ≥. K tomu potrebujete:

a) presunúť všetky výrazy do ľavá strana nerovnosti

b) nájsť korene výsledného výrazu,

c) vynásobte ľavú stranu nerovnosti

d) napíšte rovnaké súčiniteľa ako mocniny.

Pozor! Posledný krok je potrebné urobiť, aby sme sa nepomýlili s násobnosťou koreňov - ak je výsledkom násobiteľ na párnu mocninu, potom má zodpovedajúci koreň párnu násobnosť.

2. Nájdené korene nakreslite na číselnú os.

3. Ak je nerovnosť prísna, potom kruhy označujúce korene na číselnej osi sú ponechané „prázdne“, ak nerovnosť nie je striktná, potom sú kruhy vyplnené.

4. Vyberáme korene párnej násobnosti - v nich P(x) znamenie sa nemení.

5. Určite znamienko P(x) na medzere úplne vpravo. Ak to chcete urobiť, zoberte ľubovoľnú hodnotu x 0, ktorá je väčšia ako väčší koreň, a dosaďte ju P(x).

Ak P(x 0)>0 (alebo ≥0), potom na miesto úplne vpravo umiestnime znamienko „+“.

Ak P(x 0)<0 (или ≤0), то в самом правом промежутке ставим знак "-".

Pri prechode cez bod označujúci odmocninu párnej násobnosti sa znamienko NEMENÍ.

7. Ešte raz sa pozrieme na znamienko pôvodnej nerovnosti a vyberieme intervaly znamienka, ktoré potrebujeme.

8. Pozor! Ak naša nerovnosť NIE JE PRÍSNA, tak podmienku rovnosti na nulu kontrolujeme samostatne.

9. Zapíšte si odpoveď.

Ak originál nerovnosť obsahuje v menovateli neznámu, potom tiež presunieme všetky pojmy doľava a ľavú stranu nerovnosti zredukujeme na tvar

(kde V je znak nerovnosti:< или >)

Striktná nerovnosť tohto typu je ekvivalentná nerovnosti

NIE Prísne nerovnosť formy

ekvivalent systém:

V praxi, ak má funkcia tvar , potom postupujeme takto:

  1. Nájdite korene čitateľa a menovateľa.
  2. Aplikujeme ich na nápravu. Nechajte všetky kruhy prázdne. Potom, ak nerovnosť nie je striktná, potom pretrieme korene čitateľa a vždy necháme korene menovateľa prázdne.
  3. Ďalej postupujeme podľa všeobecného algoritmu:
  4. Vyberieme korene párnej násobnosti (ak čitateľ a menovateľ obsahujú rovnaké korene, potom spočítame, koľkokrát sa rovnaké korene vyskytujú). V koreňoch párnej mnohosti sa znamienko nemení.
  5. Znak zistíme na medzere úplne vpravo.
  6. Umiestňujeme značky.
  7. V prípade nestriktnej nerovnosti kontrolujeme zvlášť podmienku rovnosti a podmienku rovnosti na nulu.
  8. Vyberieme potrebné medzery a voľne stojace korene.
  9. Odpoveď zapíšeme.

Pre lepšie pochopenie algoritmus na riešenie nerovníc pomocou intervalovej metódy, pozrite si VIDEONÁVOD, ktorý podrobne vysvetľuje príklad riešenie nerovníc pomocou intervalovej metódy.

Ale dnes racionálne nerovnosti nedokážu vyriešiť všetko. Presnejšie, rozhodnúť sa môže nielen každý. Toto dokáže málokto.
Kličko

Táto lekcia bude náročná. Tak ťažké, že do konca sa dostanú len Vyvolení. Preto pred začatím čítania odporúčam odstrániť z obrazoviek ženy, mačky, tehotné deti a....

No tak, je to vlastne jednoduché. Povedzme, že ste zvládli intervalovú metódu (ak ste ju neovládali, odporúčam vrátiť sa a prečítať si ju) a naučili ste sa riešiť nerovnice tvaru $P\left(x \right) \gt 0$, kde $ P\left(x \right)$ je nejaký polynóm alebo súčin polynómov.

Verím, že pre vás nebude ťažké vyriešiť napríklad niečo takéto (mimochodom, skúste to ako rozcvičku):

\[\begin(align) & \left(2((x)^(2))+3x+4 \right)\left(4x+25 \right) \gt 0; \\ & x\left(2((x)^(2))-3x-20 \right)\left(x-1 \right)\ge 0; \\ & \left(8x-((x)^(4)) \right)((\left(x-5 \right))^(6))\le 0. \\ \end(align)\]

Teraz si problém trochu skomplikujeme a uvažujme nielen o polynómoch, ale aj o takzvaných racionálnych zlomkoch tvaru:

kde $P\left(x \right)$ a $Q\left(x \right)$ sú rovnaké polynómy v tvare $((a)_(n))((x)^(n))+( (a)_(n-1))((x)^(n-1))+...+((a)_(0))$ alebo súčin takýchto polynómov.

Toto bude racionálna nerovnosť. Základným bodom je prítomnosť premennej $x$ v menovateli. Ide napríklad o racionálne nerovnosti:

\[\begin(align) & \frac(x-3)(x+7) \lt 0; \\ & \frac(\left(7x+1 \right)\left(11x+2 \right))(13x-4)\ge 0; \\ & \frac(3((x)^(2))+10x+3)(((\left(3-x \right))^(2))\left(4-((x)^( 2)) \right))\ge 0. \\ \end(align)\]

A to nie je racionálna nerovnosť, ale najbežnejšia nerovnosť, ktorú je možné vyriešiť intervalovou metódou:

\[\frac(((x)^(2))+6x+9)(5)\ge 0\]

Pri pohľade do budúcnosti poviem hneď: existujú najmenej dva spôsoby, ako to vyriešiť racionálne nerovnosti, ale všetky z nich tak či onak prichádzajú k nám už známej intervalovej metóde. Preto predtým, ako rozoberieme tieto metódy, spomeňme si na staré fakty, inak nebude mať nový materiál zmysel.

Čo už potrebujete vedieť

Dôležitých faktov nikdy nie je priveľa. Naozaj potrebujeme len štyri.

Skrátené vzorce násobenia

Áno, áno: budú nás prenasledovať počas celého školského učiva matematiky. A aj na univerzite. Týchto vzorcov je pomerne veľa, ale potrebujeme iba tieto:

\[\begin(align) & ((a)^(2))\pm 2ab+((b)^(2))=((\left(a\pm b \right))^(2)); \\ & ((a)^(2))-((b)^(2))=\vľavo(a-b \vpravo)\vľavo(a+b \vpravo); \\ & ((a)^(3))+((b)^(3))=\left(a+b \right)\left(((a)^(2))-ab+((b) ^(2)) \vpravo); \\ & ((a)^(3))-((b)^(3))=\vľavo(a-b \vpravo)\vľavo(((a)^(2))+ab+((b)^( 2))\vpravo). \\ \end(zarovnať)\]

Venujte pozornosť posledným dvom vzorcom - sú to súčet a rozdiel kociek (a nie kocka súčtu alebo rozdielu!). Ľahko si ich zapamätáte, ak si všimnete, že znak v prvej zátvorke sa zhoduje so znakom v pôvodnom výraze a v druhej je opačný ako znak v pôvodnom výraze.

Lineárne rovnice

Toto je najviac jednoduché rovnice tvaru $ax+b=0$, kde $a$ a $b$ sú obyčajné čísla a $a\ne 0$. Táto rovnica sa dá vyriešiť jednoducho:

\[\begin(align) & ax+b=0; \\&ax=-b; \\ & x=-\frac(b)(a). \\ \end(zarovnať)\]

Dovoľte mi poznamenať, že máme právo deliť koeficientom $a$, pretože $a\ne 0$. Táto požiadavka je celkom logická, keďže pre $a=0$ dostaneme toto:

Po prvé, v tejto rovnici nie je žiadna premenná $x$. Toto by nás vo všeobecnosti nemalo zmiasť (to sa stáva, povedzme, v geometrii a dosť často), ale stále to už nie je lineárna rovnica.

Po druhé, riešenie tejto rovnice závisí výlučne od koeficientu $b$. Ak $b$ je tiež nula, potom naša rovnica má tvar $0=0$. Táto rovnosť je vždy pravdivá; to znamená, že $x$ je ľubovoľné číslo (zvyčajne sa píše takto: $x\in \mathbb(R)$). Ak sa koeficient $b$ nerovná nule, potom nie je nikdy splnená rovnosť $b=0$, t.j. neexistujú žiadne odpovede (napíšte $x\do \varnothing $ a prečítajte si „sada riešení je prázdna“).

Aby sme sa vyhli všetkým týmto ťažkostiam, jednoducho predpokladáme $a\ne 0$, čo nás v ďalšom uvažovaní vôbec neobmedzuje.

Kvadratické rovnice

Dovoľte mi pripomenúť, že toto sa nazýva kvadratická rovnica:

Tu vľavo je polynóm druhého stupňa a opäť $a\ne 0$ (inak namiesto kvadratická rovnica dostaneme lineárny). Nasledujúce rovnice sa riešia pomocou diskriminantu:

  1. Ak $D \gt 0$, dostaneme dva rôzne korene;
  2. Ak $D=0$, potom koreň bude rovnaký, ale druhej násobnosti (aký druh násobnosti je to a ako to vziať do úvahy - o tom neskôr). Alebo môžeme povedať, že rovnica má dva rovnaké korene;
  3. Pre $D \lt 0$ neexistujú vôbec žiadne korene a znamienko polynómu $a((x)^(2))+bx+c$ pre ľubovoľné $x$ sa zhoduje so znamienkom koeficientu $a $. Mimochodom, toto je veľmi užitočná skutočnosť, o ktorých sa z nejakého dôvodu zabúdajú rozprávať na hodinách algebry.

Samotné korene sa vypočítajú pomocou dobre známeho vzorca:

\[((x)_(1,2))=\frac(-b\pm \sqrt(D))(2a)\]

Odtiaľ, mimochodom, obmedzenia pre diskriminujúcich. Po všetkom Odmocnina záporného čísla neexistuje. Veľa študentov má v hlave strašný neporiadok s koreňmi, preto som špeciálne napísal celú lekciu: čo je koreň v algebre a ako ho vypočítať - vrelo odporúčam prečítať si to :)

Operácie s racionálnymi zlomkami

Všetko, čo bolo napísané vyššie, už viete, ak ste študovali intervalovú metódu. Ale to, čo teraz rozoberieme, nemá v minulosti obdobu – to je úplne nová skutočnosť.

Definícia. Racionálny zlomok je vyjadrením formy

\[\frac(P\left(x \right))(Q\left(x \right))\]

kde $P\left(x \right)$ a $Q\left(x \right)$ sú polynómy.

Je zrejmé, že z takéhoto zlomku je ľahké získať nerovnosť – stačí pridať znamienko „väčšie ako“ alebo „menšie ako“ vpravo. A o kúsok ďalej zistíme, že riešenie takýchto problémov je potešením, všetko je veľmi jednoduché.

Problémy začínajú, keď je v jednom výraze niekoľko takýchto zlomkov. Treba ich priviesť k spoločnému menovateľovi – a práve v tejto chvíli je to dovolené veľké množstvoútočné chyby.

Preto pre úspešné riešenie racionálne rovnice Je potrebné pevne zvládnuť dve zručnosti:

  1. Faktorizácia polynómu $P\left(x \right)$;
  2. Vlastne, privedenie zlomkov k spoločnému menovateľovi.

Ako faktorizovať polynóm? Veľmi jednoduché. Majme polynóm tvaru

Prirovnávame to k nule. Získame rovnicu $n$-tého stupňa:

\[((a)_(n))((x)^(n))+((a)_(n-1))((x)^(n-1))+...+(( a)_(1))x+((a)_(0))=0\]

Povedzme, že sme vyriešili túto rovnicu a dostali korene $((x)_(1)),\ ...,\ ((x)_(n))$ (neľakajte sa: vo väčšine prípadov to bude nie viac ako dva z týchto koreňov). V tomto prípade môže byť náš pôvodný polynóm prepísaný takto:

\[\začiatok(zarovnanie) & P\vľavo(x \vpravo)=((a)_(n))((x)^(n))+((a)_(n-1))((x )^(n-1))+...+((a)_(1))x+((a)_(0))= \\ & =((a)_(n))\left(x -((x)_(1)) \right)\cdot \left(x-((x)_(2)) \right)\cdot ...\cdot \left(x-((x)_( n)) \right) \end(align)\]

To je všetko! Poznámka: vodiaci koeficient $((a)_(n))$ nikde nezmizol - bude to samostatný násobiteľ pred zátvorkami a v prípade potreby ho možno vložiť do ktorejkoľvek z týchto zátvoriek (cvičenie ukazuje že s $((a)_ (n))\ne \pm 1$ sú medzi koreňmi takmer vždy zlomky).

Úloha. Zjednodušte výraz:

\[\frac(((x)^(2))+x-20)(x-4)-\frac(2((x)^(2))-5x+3)(2x-3)-\ frac(4-8x-5((x)^(2)))(x+2)\]

Riešenie. Najprv sa pozrime na menovateľov: všetky sú to lineárne binomické jednotky a nie je tu nič, čo by sa malo brať do úvahy. Rozpočítajme teda čitateľa:

\[\začiatok(zarovnať) & ((x)^(2))+x-20=\vľavo(x+5 \vpravo)\vľavo(x-4 \vpravo); \\ & 2((x)^(2))-5x+3=2\vľavo(x-\frac(3)(2) \vpravo)\vľavo(x-1 \vpravo)=\vľavo(2x- 3 \vpravo)\doľava(x-1 \vpravo); \\ & 4-8x-5((x)^(2))=-5\vľavo(x+2 \vpravo)\vľavo(x-\frac(2)(5) \vpravo)=\vľavo(x +2 \vpravo)\vľavo(2-5x \vpravo). \\\end(zarovnať)\]

Upozorňujeme: v druhom polynóme sa vodiaci koeficient „2“ v úplnom súlade s našou schémou prvýkrát objavil pred zátvorkou a potom bol zahrnutý do prvej zátvorky, pretože sa tam objavil zlomok.

To isté sa stalo v treťom polynóme, len tam je poradie členov tiež obrátené. Koeficient „-5“ sa však nakoniec dostal do druhej zátvorky (pamätajte: faktor môžete zadať iba do jednej zátvorky!), čo nás ušetrilo od nepríjemností spojených s zlomkovými koreňmi.

Pokiaľ ide o prvý polynóm, všetko je jednoduché: jeho korene sa hľadajú štandardne cez diskriminant alebo pomocou Vietovej vety.

Vráťme sa k pôvodnému výrazu a prepíšme ho s čitateľmi:

\[\začiatok(matica) \frac(\vľavo(x+5 \vpravo)\vľavo(x-4 \vpravo))(x-4)-\frac(\vľavo(2x-3 \vpravo)\vľavo( x-1 \vpravo))(2x-3)-\frac(\vľavo(x+2 \vpravo)\vľavo(2-5x \vpravo))(x+2)= \\ =\vľavo(x+5 \right)-\left(x-1 \right)-\left(2-5x \right)= \\ =x+5-x+1-2+5x= \\ =5x+4. \\ \end(matica)\]

Odpoveď: $5x+4$.

Ako vidíte, nič zložité. Trochu matematiky v 7.-8. ročníku a je to. Zmyslom všetkých premien je dostať zo zložitého a desivého výrazu niečo jednoduché a ľahko sa s tým pracuje.

Nie vždy to tak však bude. Teraz sa teda pozrieme na vážnejší problém.

Najprv však poďme zistiť, ako priviesť dva zlomky k spoločnému menovateľovi. Algoritmus je veľmi jednoduchý:

  1. Faktor oboch menovateľov;
  2. Zvážte prvého menovateľa a pridajte k nemu faktory, ktoré sú prítomné v druhom menovateli, ale nie v prvom. Výsledný produkt bude spoločným menovateľom;
  3. Zistite, aké faktory chýbajú každému z pôvodných zlomkov, aby sa menovatele rovnali spoločným.

Tento algoritmus sa vám môže zdať ako text s „veľa písmen“. Pozrime sa preto na všetko na konkrétnom príklade.

Úloha. Zjednodušte výraz:

\[\left(\frac(x)(((x)^(2))+2x+4)+\frac(((x)^(2))+8)((x)^(3) )-8)-\frac(1)(x-2) \right)\cdot \left(\frac(((x)^(2)))(((x)^(2))-4)- \frac(2)(2-x) \vpravo)\]

Riešenie. Takéto rozsiahle problémy je lepšie riešiť po častiach. Napíšme, čo je v prvej zátvorke:

\[\frac(x)(((x)^(2))+2x+4)+\frac(((x)^(2))+8)(((x)^(3))-8 )-\frac(1)(x-2)\]

Na rozdiel od predchádzajúceho problému tu nie sú menovatele také jednoduché. Zoberme si faktor každého z nich.

Štvorcový trojčlen $((x)^(2))+2x+4$ nemožno faktorizovať, pretože rovnica $((x)^(2))+2x+4=0$ nemá korene (diskriminant je záporný ). Necháme nezmenené.

Druhý menovateľ - kubický polynóm $((x)^(3))-8$ - po dôkladnom preskúmaní je rozdiel kociek a možno ho ľahko rozšíriť pomocou skrátených vzorcov na násobenie:

\[((x)^(3))-8=((x)^(3))-((2)^(3))=\left(x-2 \right)\left(((x) ^(2))+2x+4 \vpravo)\]

Nič iné sa nedá faktorizovať, keďže v prvej zátvorke je lineárna binómia a v druhej je nám už známa konštrukcia, ktorá nemá skutočné korene.

Napokon, tretím menovateľom je lineárny binom, ktorý nemožno rozšíriť. Naša rovnica teda bude mať tvar:

\[\frac(x)(((x)^(2))+2x+4)+\frac(((x)^(2))+8)(\left(x-2 \right)\left (((x)^(2))+2x+4 \right))-\frac(1)(x-2)\]

Je celkom zrejmé, že spoločný menovateľ bude presne $\left(x-2 \right)\left(((x)^(2))+2x+4 \right)$ a zredukovať naň všetky zlomky je potrebné vynásobiť prvý zlomok na $\left(x-2 \right)$ a posledný - na $\left(((x)^(2))+2x+4 \right)$. Potom už zostáva len dať podobné:

\[\začiatok(matica) \frac(x\cdot \left(x-2 \right))(\left(x-2 \right)\left(((x)^(2))+2x+4 \ vpravo))+\frac(((x)^(2))+8)(\vľavo(x-2 \vpravo)\vľavo(((x)^(2))+2x+4 \vpravo))- \frac(1\cdot \left(((x)^(2))+2x+4 \right))(\left(x-2 \right)\left(((x)^(2))+2x +4 \right))= \\ =\frac(x\cdot \left(x-2 \right)+\left(((x)^(2))+8 \right)-\left(((x) )^(2))+2x+4 \vpravo))(\vľavo(x-2 \vpravo)\vľavo(((x)^(2))+2x+4 \vpravo))= \\ =\frac (((x)^(2))-2x+((x)^(2))+8-((x)^(2))-2x-4)(\vľavo(x-2 \vpravo)\vľavo (((x)^(2))+2x+4 \right))= \\ =\frac(((x)^(2))-4x+4)(\left(x-2 \right)\ vľavo(((x)^(2))+2x+4 \vpravo)). \\ \end(matica)\]

Pozor na druhý riadok: keď je už menovateľ spoločný, t.j. Namiesto troch samostatných zlomkov sme napísali jeden veľký, zátvoriek by ste sa nemali hneď zbaviť. Je lepšie napísať ďalší riadok a poznamenať, že povedzme pred tretím zlomkom bolo mínus - a nikam to nepôjde, ale bude „visieť“ v čitateli pred zátvorkou. To vám ušetrí veľa chýb.

No, v poslednom riadku je užitočné faktorizovať čitateľa. Navyše ide o presný štvorec a opäť nám pomáhajú skrátené vzorce násobenia. Máme:

\[\frac(((x)^(2))-4x+4)(\left(x-2 \right)\left(((x)^(2))+2x+4 \right))= \frac(((\left(x-2 \right))^(2)))(\left(x-2 \right)\left(((x)^(2))+2x+4 \right) )=\frac(x-2)(((x)^(2))+2x+4)\]

Teraz sa vysporiadajme s druhou zátvorkou presne rovnakým spôsobom. Tu len napíšem reťazec rovnosti:

\[\begin(matica) \frac(((x)^(2)))(((x)^(2))-4)-\frac(2)(2-x)=\frac(((( x)^(2)))(\vľavo(x-2 \vpravo)\vľavo(x+2 \vpravo))-\frac(2)(2-x)= \\ =\frac(((x) ^(2)))(\left(x-2 \right)\left(x+2 \right))+\frac(2)(x-2)= \\ =\frac(((x)^( 2)))(\vľavo(x-2 \vpravo)\vľavo(x+2 \vpravo))+\frac(2\cdot \ľavo(x+2 \vpravo))(\vľavo(x-2 \vpravo )\cdot \left(x+2 \right))= \\ =\frac(((x)^(2))+2\cdot \left(x+2 \right))(\left(x-2) \right)\left(x+2 \right))=\frac(((x)^(2))+2x+4)(\left(x-2 \right)\left(x+2 \right) ). \\ \end(matica)\]

Vráťme sa k pôvodnému problému a pozrime sa na produkt:

\[\frac(x-2)(((x)^(2))+2x+4)\cdot \frac(((x)^(2))+2x+4)(\left(x-2 \right)\left(x+2 \right))=\frac(1)(x+2)\]

Odpoveď: \[\frac(1)(x+2)\].

Zmysel tejto úlohy je rovnaký ako tá predchádzajúca: ukázať, ako možno racionálne výrazy zjednodušiť, ak k ich premene pristúpite rozumne.

A keď už toto všetko viete, prejdime k hlavnej téme dnešnej lekcie – riešeniu zlomkových racionálnych nerovností. Navyše po takejto príprave budete praskať samotné nerovnosti ako oriešky :)

Hlavný spôsob riešenia racionálnych nerovností

Existujú minimálne dva prístupy k riešeniu racionálnych nerovností. Teraz sa pozrieme na jeden z nich - ten, ktorý je všeobecne akceptovaný v školskom kurze matematiky.

Najprv si však všimnime dôležitý detail. Všetky nerovnosti sú rozdelené do dvoch typov:

  1. Prísne: $f\left(x \right) \gt 0$ alebo $f\left(x \right) \lt 0$;
  2. Lax: $f\left(x \right)\ge 0$ alebo $f\left(x \right)\le 0$.

Nerovnosti druhého typu možno ľahko zredukovať na prvý, ako aj rovnicu:

Toto malé „doplnenie“ $f\left(x \right)=0$ vedie k takej nepríjemnej veci, akou sú vyplnené body - zoznámili sme sa s nimi v intervalovej metóde. V opačnom prípade neexistujú žiadne rozdiely medzi striktnými a neprísnymi nerovnosťami, takže sa pozrime na univerzálny algoritmus:

  1. Zhromaždite všetky nenulové prvky na jednej strane znaku nerovnosti. Napríklad vľavo;
  2. Všetky zlomky zredukujte na spoločného menovateľa (ak je takýchto zlomkov niekoľko), prineste podobné. Potom, ak je to možné, vynásobte čitateľa a menovateľa. Tak či onak dostaneme nerovnosť v tvare $\frac(P\left(x \right))(Q\left(x \right))\vee 0$, kde „fajfka“ je znak nerovnosti .
  3. Čitateľ prirovnáme k nule: $P\left(x \right)=0$. Vyriešime túto rovnicu a získame korene $((x)_(1))$, $((x)_(2))$, $((x)_(3))$, ... Potom požadujeme že menovateľ nebol rovný nule: $Q\left(x \right)\ne 0$. Samozrejme, v podstate musíme vyriešiť rovnicu $Q\left(x \right)=0$ a dostaneme korene $x_(1)^(*)$, $x_(2)^(*)$ , $x_(3 )^(*)$, ... (v skutočných problémoch sotva budú viac ako tri takéto korene).
  4. Všetky tieto korene (s hviezdičkami aj bez nich) označíme na jednej číselnej osi a korene bez hviezd premaľujeme a tie s hviezdičkami prepichneme.
  5. Umiestňujeme znamienka „plus“ a „mínus“, vyberieme intervaly, ktoré potrebujeme. Ak má nerovnosť tvar $f\left(x \right) \gt 0$, odpoveďou budú intervaly označené „plus“. Ak $f\left(x \right) \lt 0$, potom sa pozrieme na intervaly s „mínuskami“.

Prax ukazuje, že najväčšie ťažkosti spôsobujú body 2 a 4 - kompetentné transformácie a správne usporiadanie čísel vo vzostupnom poradí. No, pri poslednom kroku buďte mimoriadne opatrní: značky vždy umiestňujeme na základe úplne posledná nerovnosť napísaná pred prechodom na rovnice. Toto univerzálne pravidlo, zdedený z intervalovej metódy.

Takže existuje schéma. Poďme cvičiť.

Úloha. Vyriešte nerovnosť:

\[\frac(x-3)(x+7) \lt 0\]

Riešenie. Máme striktnú nerovnosť v tvare $f\left(x \right) \lt 0$. Je zrejmé, že body 1 a 2 z našej schémy už boli splnené: všetky prvky nerovnosti sú zhromaždené vľavo, nie je potrebné nič priviesť k spoločnému menovateľovi. Preto prejdime rovno k tretiemu bodu.

Čitateľa prirovnáme k nule:

\[\begin(align) & x-3=0; \\ & x=3. \end(align)\]

A menovateľ:

\[\begin(align) & x+7=0; \\ & ((x)^(*))=-7. \\ \end(zarovnať)\]

Tu sa veľa ľudí zasekne, pretože teoreticky musíte napísať $x+7\ne 0$, ako to vyžaduje ODZ (nemôžete deliť nulou, to je všetko). Ale v budúcnosti budeme vypichovať body, ktoré pochádzajú z menovateľa, takže nie je potrebné znova komplikovať výpočty - napíšte všade rovnaké znamienko a nemusíte sa obávať. Nikto vám za to nebude strhávať body :)

Štvrtý bod. Výsledné korene označíme na číselnej osi:

Všetky body sú vyznačené, pretože nerovnosť je prísna

Poznámka: všetky body sú vyznačené, pretože pôvodná nerovnosť je prísna. A tu nezáleží na tom, či tieto body pochádzajú z čitateľa alebo menovateľa.

Nuž, pozrime sa na znamenia. Zoberme si ľubovoľné číslo $((x)_(0)) \gt 3$. Napríklad $((x)_(0))=100$ (ale s rovnakým úspechom by ste mohli vziať $((x)_(0))=3,1$ alebo $((x)_(0)) = 1\ 000\ 000 $). Dostaneme:

Takže napravo od všetkých koreňov máme pozitívny región. A pri prechode cez každý koreň sa znamienko mení (nebude to tak vždy, ale o tom neskôr). Preto prejdime k piatemu bodu: usporiadajte značky a vyberte ten, ktorý potrebujete:

Vráťme sa k poslednej nerovnosti, ktorá bola pred riešením rovníc. V skutočnosti sa zhoduje s pôvodným, pretože sme v tejto úlohe nevykonali žiadne transformácie.

Keďže potrebujeme vyriešiť nerovnosť v tvare $f\left(x \right) \lt 0$, vytieňoval som interval $x\in \left(-7;3 \right)$ - ako jediný je označený so znamienkom mínus. Toto je odpoveď.

Odpoveď: $x\in \left(-7;3 \right)$

To je všetko! Je to zložité? Nie, nie je to ťažké. Pravda, úloha bola ľahká. Teraz trochu skomplikujme misiu a zvážme „sofistikovanejšiu“ nerovnosť. Pri jeho riešení už nebudem dávať také podrobné výpočty - len načrtnem kľúčové body. Vo všeobecnosti ho naformátujeme tak, ako by sme ho naformátovali samostatná práca alebo skúška :)

Úloha. Vyriešte nerovnosť:

\[\frac(\left(7x+1 \right)\left(11x+2 \right))(13x-4)\ge 0\]

Riešenie. Toto je neprísna nerovnosť tvaru $f\left(x \right)\ge 0$. Všetky nenulové prvky sú zhromaždené vľavo, rôznych menovateľov Nie Prejdime k rovniciam.

Čitateľ:

\[\začiatok(zarovnanie) & \ľavý(7x+1 \vpravo)\ľavý(11x+2 \vpravo)=0 \\ & 7x+1=0\šípka doprava ((x)_(1))=-\ frac(1)(7); \\ & 11x+2=0\šípka doprava ((x)_(2))=-\frac(2)(11). \\ \end(zarovnať)\]

Menovateľ:

\[\začiatok(zarovnanie) & 13x-4=0; \\ & 13x=4; \\ & ((x)^(*))=\frac(4)(13). \\ \end(zarovnať)\]

Neviem, aký druh perverza spôsobil tento problém, ale korene nedopadli veľmi dobre: ​​bolo by ťažké ich umiestniť na číselnú os. A ak s koreňom $((x)^(*))=(4)/(13)\;$ je všetko viac-menej jasné (toto je jediné kladné číslo - bude vpravo), potom $ ((x)_(1))=-(1)/(7)\;$ a $((x)_(2))=-(2)/(11)\;$ vyžadujú ďalší výskum: ktorý je väčší?

Môžete to zistiť napríklad takto:

\[((x)_(1))=-\frac(1)(7)=-\frac(2)(14) \gt -\frac(2)(11)=((x)_(2) ))\]

Dúfam, že nie je potrebné vysvetľovať, prečo číselný zlomok $-(2)/(14)\; \gt -(2)/(11)\;$? V prípade potreby odporúčam zapamätať si, ako vykonávať operácie so zlomkami.

A označíme všetky tri korene na číselnej osi:

Bodky z čitateľa sú vyplnené, bodky z menovateľa sú prepichnuté

Umiestňujeme značky. Môžete napríklad vziať $((x)_(0))=1$ a zistiť znamenie v tomto bode:

\[\začiatok(zarovnanie) & f\vľavo(x \vpravo)=\frac(\vľavo(7x+1 \vpravo)\vľavo(11x+2 \vpravo))(13x-4); \\ & f\left(1 \right)=\frac(\left(7\cdot 1+1 \right)\left(11\cdot 1+2 \right))(13\cdot 1-4)=\ frac(8\cdot 13)(9) \gt 0. \\\end(align)\]

Posledná nerovnica pred rovnicami bola $f\left(x \right)\ge 0$, takže nás zaujíma znamienko plus.

Máme dve sady: jedna je obyčajný segment a druhá je otvorený lúč na číselnej osi.

Odpoveď: $x\in \left[ -\frac(2)(11);-\frac(1)(7) \right]\bigcup \left(\frac(4)(13);+\infty \right )$

Dôležitá poznámka o číslach, ktoré nahrádzame, aby sme zistili znamienko na intervale úplne vpravo. Absolútne nie je potrebné nahradiť číslo najbližšie k pravému koreňu. Môžete si vziať miliardy alebo dokonca „plus-nekonečno“ - v tomto prípade je znamienko polynómu v zátvorke, čitateli alebo menovateli určené výlučne znamienkom vedúceho koeficientu.

Pozrime sa ešte raz na funkciu $f\left(x \right)$ od poslednej nerovnosti:

Jeho zápis obsahuje tri polynómy:

\[\začiatok(zarovnanie) & ((P)_(1))\vľavo(x \vpravo)=7x+1; \\ & ((P)_(2))\left(x \right)=11x+2; \\ & Q\left(x \right)=13x-4. \end(align)\]

Všetky sú lineárne binomy a všetky ich vodiace koeficienty (čísla 7, 11 a 13) sú kladné. Preto pri nahrádzaní veľmi veľké čísla Aj samotné polynómy budú pozitívne :)

Toto pravidlo sa môže zdať príliš komplikované, ale iba na začiatku, keď analyzujeme veľmi ľahké problémy. Pri vážnych nerovnostiach nám nahradenie „plus-nekonečno“ umožní zistiť znamienka oveľa rýchlejšie ako štandardné $((x)_(0))=100$.

Veľmi skoro budeme čeliť takýmto výzvam. Najprv sa však pozrime na alternatívny spôsob riešenia zlomkových racionálnych nerovností.

Alternatívny spôsob

Túto techniku ​​mi navrhol jeden z mojich študentov. Sám som to nikdy nepoužil, ale prax ukázala, že mnohým študentom naozaj vyhovuje riešiť nerovnosti týmto spôsobom.

Takže počiatočné údaje sú rovnaké. Musíme vyriešiť zlomkovú racionálnu nerovnosť:

\[\frac(P\left(x \right))(Q\left(x \right)) \gt 0\]

Zamyslime sa: prečo je polynóm $Q\left(x \right)$ “horší” ako polynóm $P\left(x \right)$? Prečo musíme uvažovať samostatné skupiny korienky (s hviezdičkou aj bez), pomyslite na prepichnuté body a pod.? Je to jednoduché: zlomok má definičný obor, podľa ktorého zlomok dáva zmysel iba vtedy, keď je jeho menovateľ nenulový.

Inak rozdiely medzi čitateľom a menovateľom nie sú: tiež ho prirovnáme k nule, hľadáme korene, potom ich označíme na číselnej osi. Prečo teda nenahradiť zlomkovú čiaru (v skutočnosti znamienko delenia) obyčajným násobením a nezapísať všetky požiadavky ODZ vo forme samostatnej nerovnosti? Napríklad takto:

\[\frac(P\left(x \right))(Q\left(x \right)) \gt 0\Rightarrow \left\( \begin(align) & P\left(x \right)\cdot Q \left(x \right) \gt 0, \\ & Q\left(x \right)\ne 0. \\ \end(align) \right.\]

Poznámka: tento prístup zredukuje problém na intervalovú metódu, ale vôbec neskomplikuje riešenie. Veď aj tak budeme polynóm $Q\left(x \right)$ rovnať nule.

Pozrime sa, ako to funguje na skutočných problémoch.

Úloha. Vyriešte nerovnosť:

\[\frac(x+8)(x-11) \gt 0\]

Riešenie. Prejdime teda k intervalovej metóde:

\[\frac(x+8)(x-11) \gt 0\šípka doprava \vľavo\( \začiatok(zarovnanie) & \ľavá(x+8 \vpravo)\vľavo(x-11 \vpravo) \gt 0 , \\ & x-11\ne 0. \\ \end(zarovnať) \vpravo.\]

Prvá nerovnosť sa dá vyriešiť elementárnym spôsobom. Jednoducho prirovnáme každú zátvorku k nule:

\[\začiatok(zarovnanie) & x+8=0\šípka doprava ((x)_(1))=-8; \\ & x-11=0\šípka doprava ((x)_(2))=11. \\ \end(zarovnať)\]

Druhá nerovnosť je tiež jednoduchá:

Označte body $((x)_(1))$ a $((x)_(2))$ na číselnej osi. Všetky sú vyradené, pretože nerovnosť je prísna:

Správny bod bol vyrazený dvakrát. Toto je fajn.

Venujte pozornosť bodu $x=11$. Ukazuje sa, že je „dvakrát prepichnutá“: na jednej strane ju vypichujeme pre závažnosť nerovnosti, na druhej strane preto, dodatočná požiadavka ODZ.

V každom prípade to bude len prepichnutý bod. Preto usporiadame znamienka pre nerovnosť $\left(x+8 \right)\left(x-11 \right) \gt 0$ - posledné, ktoré sme videli predtým, než sme začali riešiť rovnice:

Nás zaujímajú pozitívne oblasti, keďže riešime nerovnosť v tvare $f\left(x \right) \gt 0$ - tie vytieňujeme. Zostáva už len zapísať odpoveď.

Odpoveď. $x\v \ľavo(-\infty ;-8 \vpravo)\veľký pohár \ľavý(11;+\infty \vpravo)$

Na príklade tohto riešenia by som vás chcel varovať pred častou chybou začínajúcich študentov. Totiž: nikdy neotvárajte zátvorky v nerovnostiach! Naopak, snažte sa všetko zohľadniť - zjednodušíte tým riešenie a ušetríte veľa problémov.

Teraz skúsme niečo zložitejšie.

Úloha. Vyriešte nerovnosť:

\[\frac(\left(2x-13 \right)\left(12x-9 \right))(15x+33)\le 0\]

Riešenie. Toto je nestriktná nerovnosť tvaru $f\left(x \right)\le 0$, takže tu musíte venovať veľkú pozornosť tieňovaným bodom.

Prejdime k intervalovej metóde:

\[\vľavo\( \začiatok(zarovnať) & \vľavo(2x-13 \vpravo)\vľavo(12x-9 \vpravo)\vľavo(15x+33 \vpravo)\le 0, \\ & 15x+33\ nie 0. \\ \end(zarovnať) \vpravo.\]

Poďme k rovnici:

\[\začiatok(zarovnanie) & \vľavo(2x-13 \vpravo)\vľavo(12x-9 \vpravo)\vľavo(15x+33 \vpravo)=0 \\ & 2x-13=0\šípka vpravo ((x )_(1))=6,5; \\ & 12x-9=0\šípka doprava ((x)_(2))=0,75; \\ & 15x+33=0\Šípka doprava ((x)_(3))=-2,2. \\ \end(zarovnať)\]

Berieme do úvahy dodatočnú požiadavku:

Všetky výsledné korene označíme na číselnej osi:

Ak je bod prepichnutý aj vyplnený, považuje sa za prepichnutý

Opäť sa dva body „prekrývajú“ - to je normálne, vždy to tak bude. Dôležité je len pochopiť, že bod označený ako prepichnutý aj prefarbený je v skutočnosti prepichnutý bod. Tie. „pichanie“ je silnejšia akcia ako „maľovanie“.

Je to úplne logické, pretože štipnutím označujeme body, ktoré ovplyvňujú znamienko funkcie, ale samy sa na odpovedi nezúčastňujú. A ak nám v určitom momente už číslo nevyhovuje (napr. nespadá do ODZ), odškrtávame ho z úvahy až do úplného konca úlohy.

Vo všeobecnosti prestaňte filozofovať. Umiestňujeme značky a maľujeme cez tie intervaly, ktoré sú označené znamienkom mínus:

Odpoveď. $x\in \left(-\infty ;-2,2 \right)\bigcup \left[ 0,75;6,5 \right]$.

A opäť som chcel upriamiť vašu pozornosť na túto rovnicu:

\[\vľavo(2x-13 \vpravo)\vľavo(12x-9 \vpravo)\vľavo(15x+33 \vpravo)=0\]

Ešte raz: nikdy neotvárajte zátvorky v takýchto rovniciach! Všetko si len sťažíte. Pamätajte: súčin sa rovná nule, keď sa aspoň jeden z faktorov rovná nule. Následne sa táto rovnica jednoducho „rozpadne“ na niekoľko menších, ktoré sme vyriešili v predchádzajúcom probléme.

Berúc do úvahy množstvo koreňov

Z predchádzajúcich problémov je dobre vidieť, že práve neprísne nerovnosti sú najťažšie, pretože v nich musíte sledovať vytieňované body.

Ale na svete je ešte väčšie zlo – to sú viaceré korene v nerovnostiach. Tu už nemusíte sledovať niektoré tieňované body - tu sa znamienko nerovnosti nemusí náhle zmeniť pri prechode cez tie isté body.

O ničom takom sme v tejto lekcii ešte neuvažovali (hoci s podobným problémom sme sa často stretávali aj pri intervalovej metóde). Preto uvádzame novú definíciu:

Definícia. Koreň rovnice $((\left(x-a \right))^(n))=0$ sa rovná $x=a$ a nazýva sa koreň $n$-tej násobnosti.

V skutočnosti nás presná hodnota multiplicity nijako zvlášť nezaujíma. Jediné, na čom záleží, je, či je toto isté číslo $n$ párne alebo nepárne. Pretože:

  1. Ak $x=a$ je odmocnina párnej násobnosti, potom sa znamienko funkcie pri prechode cez ňu nemení;
  2. A naopak, ak $x=a$ je koreň nepárnej násobnosti, potom sa znamienko funkcie zmení.

Všetky predchádzajúce problémy diskutované v tejto lekcii sú špeciálnym prípadom koreňa nepárnej násobnosti: všade sa násobnosť rovná jednej.

A ďalej. Skôr ako začneme riešiť problémy, rád by som upriamil vašu pozornosť na jednu jemnosť, ktorá sa skúsenému študentovi zdá zrejmá, no mnohých začiatočníkov privádza do strnulosti. menovite:

Koreň násobnosti $n$ vzniká iba v prípade, keď je celý výraz umocnený na túto mocninu: $((\left(x-a \right))^(n))$, a nie $\left(((x) ^( n))-a \vpravo)$.

Ešte raz: zátvorka $((\left(x-a \right))^(n))$ nám dáva koreň $x=a$ násobnosti $n$, ale zátvorka $\left(((x)^( n)) -a \right)$ alebo, ako sa často stáva, $(a-((x)^(n)))$ nám dáva koreň (alebo dva korene, ak je $n$ párne) prvej násobnosti , bez ohľadu na to, čo sa rovná $n$.

Porovnaj:

\[((\vľavo(x-3 \vpravo))^(5))=0\šípka doprava x=3\vľavo(5k \vpravo)\]

Tu je všetko jasné: celá konzola bola zvýšená na piatu mocninu, takže výstup, ktorý sme dostali, bol koreň piatej mocniny. A teraz:

\[\vľavo(((x)^(2))-4 \vpravo)=0\Šípka doprava ((x)^(2))=4\Šípka doprava x=\pm 2\]

Máme dva korene, ale oba majú prvú multiplicitu. Alebo tu je ďalší:

\[\vľavo(((x)^(10))-1024 \right)=0\šípka vpravo ((x)^(10))=1024\šípka vpravo x=\pm 2\]

A desiaty stupeň nech vás netrápi. Hlavná vec je, že 10 je párne číslo, takže na výstupe máme dva korene a oba majú opäť prvý násobok.

Vo všeobecnosti buďte opatrní: k multiplicite dochádza iba vtedy stupeň sa vzťahuje na celú zátvorku, nielen na premennú.

Úloha. Vyriešte nerovnosť:

\[\frac(((x)^(2))((\left(6-x \right))^(3))\left(x+4 \right))(((\left(x+7) \right))^(5)))\ge 0\]

Riešenie. Skúsme to vyriešiť alternatívny spôsob- prechodom od konkrétneho k produktu:

\[\left\( \begin(align) & ((x)^(2))((\left(6-x \right))^(3))\left(x+4 \right)\cdot ( (\left(x+7 \right))^(5))\ge 0, \\ & ((\left(x+7 \right))^(5))\ne 0. \\ \end(align )\správny.\]

Poďme sa vysporiadať s prvou nerovnosťou pomocou intervalovej metódy:

\[\začiatok(zarovnanie) & ((x)^(2))((\left(6-x \right))^(3))\left(x+4 \right)\cdot ((\left( x+7 \vpravo))^(5))=0; \\ & ((x)^(2))=0\šípka doprava x=0\vľavo(2k \vpravo); \\ & ((\vľavo(6-x \vpravo))^(3))=0\šípka vpravo x=6\vľavo(3k \vpravo); \\ & x+4=0\Šípka doprava x=-4; \\ & ((\vľavo(x+7 \vpravo))^(5))=0\šípka vpravo x=-7\vľavo(5k \vpravo). \\ \end(zarovnať)\]

Dodatočne riešime druhú nerovnosť. V skutočnosti sme to už vyriešili, ale aby recenzenti na riešení nenašli chybu, je lepšie to vyriešiť znova:

\[((\left(x+7 \right))^(5))\ne 0\Rightarrow x\ne -7\]

Poznámka: v poslednej nerovnosti nie sú žiadne násobky. V skutočnosti: aký je rozdiel v tom, koľkokrát prečiarknete bod $x=-7$ na číselnej osi? Aspoň raz, aspoň päťkrát bude výsledok rovnaký: prepichnutý bod.

Označme všetko, čo sme dostali na číselnú os:

Ako som povedal, bod $x=-7$ bude nakoniec prepichnutý. Násobnosti sú usporiadané na základe riešenia nerovnosti pomocou intervalovej metódy.

Zostáva len umiestniť značky:

Keďže bod $x=0$ je odmocninou párnej násobnosti, znamienko sa pri prechode cez neho nemení. Zvyšné body majú nepárny násobok a všetko je s nimi jednoduché.

Odpoveď. $x\v \ľavo(-\infty ;-7 \vpravo)\veľký pohár \ľavý[ -4;6 \vpravo]$

Ešte raz, venujte pozornosť $x=0$. Vďaka rovnomernej mnohosti vzniká zaujímavý efekt: všetko vľavo od neho je prelakované, všetko vpravo je tiež premaľované a samotný bod je úplne prelakovaný.

Vďaka tomu nemusí byť pri zaznamenávaní odpovede izolovaný. Tie. nie je potrebné písať niečo ako $x\in \left[ -4;0 \right]\bigcup \left[ 0;6 \right]$ (aj keď formálne by takáto odpoveď bola tiež správna). Namiesto toho okamžite napíšeme $x\in \left[ -4;6 \right]$.

Takéto účinky sú možné len s koreňmi rovnomernej násobnosti. A v ďalšom probléme sa stretneme s opačným „prejavom“ tohto efektu. pripravený?

Úloha. Vyriešte nerovnosť:

\[\frac(((\left(x-3 \right))^(4))\left(x-4 \right))(((\left(x-1 \right))^(2)) \left(7x-10-((x)^(2)) \right))\ge 0\]

Riešenie. Tentokrát budeme postupovať podľa štandardnej schémy. Čitateľa prirovnáme k nule:

\[\začiatok(zarovnať) & ((\vľavo(x-3 \vpravo))^(4))\vľavo(x-4 \vpravo)=0; \\ & ((\left(x-3 \right))^(4))=0\Rightarrow ((x)_(1))=3\left(4k \right); \\ & x-4=0\Šípka doprava ((x)_(2))=4. \\ \end(zarovnať)\]

A menovateľ:

\[\začiatok(zarovnať) & ((\vľavo(x-1 \vpravo))^(2))\vľavo(7x-10-((x)^(2)) \vpravo)=0; \\ & ((\vľavo(x-1 \vpravo))^(2))=0\šípka vpravo x_(1)^(*)=1\vľavo(2k \vpravo); \\ & 7x-10-((x)^(2))=0\šípka doprava x_(2)^(*)=5;\ x_(3)^(*)=2. \\ \end(zarovnať)\]

Keďže riešime nestriktnú nerovnosť v tvare $f\left(x \right)\ge 0$, korene z menovateľa (ktoré majú hviezdičky) sa vyberú a tie z čitateľa budú tieňované.

Umiestňujeme značky a tieňujeme oblasti označené „plus“:

Bod $x=3$ je izolovaný. Toto je časť odpovede

Pred zapísaním konečnej odpovede sa pozrime bližšie na obrázok:

  1. Bod $x=1$ má párnu násobnosť, ale sám je prepichnutý. V dôsledku toho bude musieť byť v odpovedi izolovaná: musíte napísať $x\in \left(-\infty ;1 \right)\bigcup \left(1;2 \right)$, a nie $x\in \left(-\ infty ;2 \right)$.
  2. Bod $x=3$ má tiež párnu násobnosť a je tieňovaný. Usporiadanie značiek naznačuje, že samotný bod nám vyhovuje, ale krok doľava alebo doprava – a ocitáme sa v oblasti, ktorá nám rozhodne nevyhovuje. Takéto body sa nazývajú izolované a zapisujú sa v tvare $x\in \left\( 3 \right\)$.

Všetky prijaté kúsky spojíme do spoločnej sady a zapíšeme odpoveď.

Odpoveď: $x\in \left(-\infty ;1 \right)\bigcup \left(1;2 \right)\bigcup \left\( 3 \right\)\bigcup \left[ 4;5 \right) $

Definícia. Riešenie nerovnosti znamená nájsť množinu všetkých jeho riešení alebo dokážte, že táto množina je prázdna.

Zdalo by sa: čo tu môže byť nepochopiteľné? Áno, faktom je, že množiny možno definovať rôznymi spôsobmi. Napíšme si ešte raz odpoveď na posledný problém:

Doslova čítame, čo je napísané. Premenná „x“ patrí do určitej množiny, ktorá sa získa spojením (znak „U“) štyroch samostatných množín:

  • Interval $\left(-\infty ;1 \right)$, čo doslovne znamená „všetky čísla menšie ako jedna, ale nie samotná jednotka“;
  • Interval $\left(1;2 \right)$, t.j. „všetky čísla v rozsahu od 1 do 2, ale nie samotné čísla 1 a 2“;
  • Množina $\left\( 3 \right\)$, pozostávajúca z jedného jediného čísla - tri;
  • Interval $\left[ 4;5 \right)$ obsahujúci všetky čísla v rozsahu od 4 do 5, ako aj samotné štyri, ale nie päť.

Tu je zaujímavý tretí bod. Na rozdiel od intervalov, ktoré definujú nekonečné množiny čísel a označujú len hranice týchto množín, množina $\left\( 3 \right\)$ špecifikuje striktne jedno číslo pomocou enumerácie.

Aby sme pochopili, že uvádzame konkrétne čísla zahrnuté v súprave (a neurčujeme hranice ani nič iné), používajú sa zložené zátvorky. Napríklad zápis $\left\( 1;2 \right\)$ znamená presne „množinu pozostávajúcu z dvoch čísel: 1 a 2“, ale nie segment od 1 do 2. Za žiadnych okolností si tieto pojmy nezamieňajte .

Pravidlo pre sčítanie násobkov

No a na záver dnešnej lekcie malá plechovka od Pavla Berdova :)

Pozorných študentov už zrejme napadlo: čo sa stane, ak budú mať čitateľ a menovateľ rovnaké korene? Funguje teda nasledujúce pravidlo:

Pridajú sa násobky rovnakých koreňov. Vždy. Aj keď sa tento koreň vyskytuje v čitateli aj v menovateli.

Niekedy je lepšie rozhodnúť sa ako rozprávať. Preto riešime nasledujúci problém:

Úloha. Vyriešte nerovnosť:

\[\frac(((x)^(2))+6x+8)(\left(((x)^(2))-16 \right)\left(((x)^(2))+ 9x+14 \vpravo))\ge 0\]

\[\begin(align) & ((x)^(2))+6x+8=0 \\ & ((x)_(1))=-2;\ ((x)_(2))= -4. \\ \end(zarovnať)\]

Zatiaľ nič zvláštne. Menovateľa prirovnáme k nule:

\[\begin(align) & \left(((x)^(2))-16 \right)\left(((x)^(2))+9x+14 \right)=0 \\ & ( (x)^(2))-16=0\šípka doprava x_(1)^(*)=4;\ x_(2)^(*)=-4; \\ & ((x)^(2))+9x+14=0\šípka doprava x_(3)^(*)=-7;\ x_(4)^(*)=-2. \\ \end(zarovnať)\]

Boli objavené dva identické korene: $((x)_(1))=-2$ a $x_(4)^(*)=-2$. Obaja majú prvú násobnosť. Preto ich nahradíme jedným koreňom $x_(4)^(*)=-2$, ale s násobnosťou 1+1=2.

Okrem toho existujú aj identické korene: $((x)_(2))=-4$ a $x_(2)^(*)=-4$. Sú tiež prvej násobnosti, takže zostane len $x_(2)^(*)=-4$ z násobnosti 1+1=2.

Poznámka: v oboch prípadoch sme ponechali presne „prepichnutý“ koreň a vylúčili sme z úvahy „namaľovaný“. Pretože na začiatku hodiny sme sa zhodli: ak je bod prepichnutý aj prelakovaný, tak ho stále považujeme za prepichnutý.

V dôsledku toho máme štyri korene a všetky boli vyrezané:

\[\begin(align) & x_(1)^(*)=4; \\ & x_(2)^(*)=-4\left(2k \right); \\ & x_(3)^(*)=-7; \\ & x_(4)^(*)=-2\vľavo(2k \vpravo). \\ \end(zarovnať)\]

Označujeme ich na číselnej osi, berúc do úvahy násobnosť:

Umiestňujeme značky a farby na oblasti, ktoré nás zaujímajú:

Všetky. Žiadne izolované body alebo iné zvrátenosti. Odpoveď si môžete zapísať.

Odpoveď. $x\v \left(-\infty ;-7 \right)\bigcup \left(4;+\infty \right)$.

Pravidlo pre násobenie

Niekedy sa vyskytuje ešte viac nepríjemná situácia: Rovnica, ktorá má viacero koreňov, je sama o sebe povýšená na nejakú mocnosť. V tomto prípade sa menia násobnosti všetkých pôvodných koreňov.

Je to zriedkavé, takže väčšina študentov nemá skúsenosti s riešením takýchto problémov. A tu platí pravidlo:

Keď sa rovnica zvýši na $n$ mocninu, násobky všetkých jej koreňov sa tiež zvýšia $n$ krát.

Inými slovami, zvýšenie na mocninu vedie k vynásobeniu násobkov rovnakou mocninou. Pozrime sa na toto pravidlo na príklade:

Úloha. Vyriešte nerovnosť:

\[\frac(x((\left(((x)^(2))-6x+9 \right))^(2))((\left(x-4 \right))^(5)) )(((\left(2-x \right))^(3))((\left(x-1 \right))^(2)))\le 0\]

Riešenie. Čitateľa prirovnáme k nule:

Súčin je nula, keď je aspoň jeden z faktorov nula. S prvým faktorom je všetko jasné: $x=0$. Potom však začnú problémy:

\[\begin(align) & ((\left(((x)^(2))-6x+9 \right))^(2))=0; \\ & ((x)^(2))-6x+9=0\left(2k \right); \\ & D=((6)^(3))-4\cdot 9=0 \\ & ((x)_(2))=3\vľavo (2k \vpravo)\vľavo (2k \vpravo) \ \& ((x)_(2))=3\vľavo (4k \vpravo) \\ \end(zarovnať)\]

Ako vidíme, rovnica $((x)^(2))-6x+9=0$ má jeden koreň druhej násobnosti: $x=3$. Celá táto rovnica sa potom umocní na druhú. Preto násobnosť koreňa bude $2\cdot 2=4$, čo sme si nakoniec zapísali.

\[((\vľavo(x-4 \vpravo))^(5))=0\šípka vpravo x=4\vľavo(5k \vpravo)\]

Problémy nie sú ani s menovateľom:

\[\začiatok(zarovnať) & ((\vľavo(2-x \vpravo))^(3))((\vľavo(x-1 \vpravo))^(2))=0; \\ & ((\vľavo(2-x \vpravo))^(3))=0\šípka vpravo x_(1)^(*)=2\vľavo(3k \vpravo); \\ & ((\vľavo(x-1 \vpravo))^(2))=0\šípka vpravo x_(2)^(*)=1\vľavo(2k \vpravo). \\ \end(zarovnať)\]

Celkovo sme dostali päť bodiek: dve prepichnuté a tri maľované. V čitateli a menovateli nie sú žiadne zhodné korene, takže ich jednoducho označíme na číselnej osi:

Značky usporiadame s prihliadnutím na násobnosti a namaľujeme intervaly, ktoré nás zaujímajú:

Opäť jeden izolovaný bod a jeden prepichnutý

Kvôli koreňom rovnomernej mnohosti sme opäť dostali pár „neštandardných“ prvkov. Toto je $x\in \left[ 0;1 \right)\bigcup \left(1;2 \right)$, a nie $x\in \left[ 0;2 \right)$, a tiež izolovaný bod $ x\v \vľavo\( 3 \vpravo\)$.

Odpoveď. $x\in \left[ 0;1 \right)\bigcup \left(1;2 \right)\bigcup \left\( 3 \right\)\bigcup \left[ 4;+\infty \right)$

Ako vidíte, všetko nie je také zložité. Hlavná vec je pozornosť. Posledná časť tejto lekcie je venovaná transformáciám – tým istým, o ktorých sme hovorili na samom začiatku.

Predkonverzie

Nerovnosti, ktoré budeme v tejto časti skúmať, nemožno nazvať komplexnými. Na rozdiel od predchádzajúcich úloh tu však budete musieť uplatniť zručnosti z teórie racionálnych zlomkov – faktorizácie a redukcie na spoločného menovateľa.

Túto otázku sme podrobne rozobrali na samom začiatku dnešnej lekcie. Ak si nie ste istí, či rozumiete, o čom hovorím, vrelo odporúčam vrátiť sa a zopakovať si to. Pretože nemá zmysel napchávať sa metódami na riešenie nerovností, ak „plávate“ v prevode zlomkov.

IN domáca úloha Mimochodom, podobných úloh bude tiež veľa. Sú umiestnené v samostatnej podsekcii. A tam nájdete veľmi netriviálne príklady. Ale toto bude v domácej úlohe a teraz sa pozrime na pár takýchto nerovností.

Úloha. Vyriešte nerovnosť:

\[\frac(x)(x-1)\le \frac(x-2)(x)\]

Riešenie. Presuňte všetko doľava:

\[\frac(x)(x-1)-\frac(x-2)(x)\le 0\]

Zredukujeme na spoločného menovateľa, otvoríme zátvorky a v čitateli uvedieme podobné výrazy:

\[\začiatok(zarovnanie) & \frac(x\cbodka x)(\vľavo(x-1 \vpravo)\cbodka x)-\frac(\vľavo(x-2 \vpravo)\vľavo(x-1 \ right))(x\cdot \left(x-1 \right))\le 0; \\ & \frac(((x)^(2))-\left(((x)^(2))-2x-x+2 \right))(x\left(x-1 \right)) \le 0; \\ & \frac(((x)^(2))-((x)^(2))+3x-2)(x\vľavo(x-1 \vpravo))\le 0; \\ & \frac(3x-2)(x\vľavo (x-1 \vpravo))\le 0. \\\end(zarovnať)\]

Teraz máme pred sebou klasickú zlomkovo-racionálnu nerovnosť, ktorej riešenie už nie je zložité. Navrhujem, aby ste to vyriešili alternatívna metóda— pomocou intervalovej metódy:

\[\začiatok(zarovnanie) & \ľavý(3x-2 \vpravo)\cbodka x\cbodka \ľavý(x-1 \vpravo)=0; \\ & ((x)_(1))=\frac(2)(3);\ ((x)_(2))=0;\ ((x)_(3))=1. \\ \end(zarovnať)\]

Nezabudnite na obmedzenie, ktoré pochádza z menovateľa:

Označujeme všetky čísla a obmedzenia na číselnej osi:

Všetky korene majú prvú multiplicitu. Žiaden problém. Jednoducho umiestnime značky a namaľujeme oblasti, ktoré potrebujeme:

To je všetko. Odpoveď si môžete zapísať.

Odpoveď. $x\in \left(-\infty ;0 \right)\bigcup \left[ (2)/(3)\;;1 \right)$.

Samozrejme, toto bol veľmi jednoduchý príklad. Takže teraz sa pozrime na problém vážnejšie. A mimochodom, úroveň tejto úlohy je celkom v súlade s nezávislými a testy na túto tému v 8. ročníku.

Úloha. Vyriešte nerovnosť:

\[\frac(1)(((x)^(2))+8x-9)\ge \frac(1)(3((x)^(2))-5x+2)\]

Riešenie. Presuňte všetko doľava:

\[\frac(1)(((x)^(2))+8x-9)-\frac(1)(3((x)^(2))-5x+2)\ge 0\]

Predtým, ako privedieme oba zlomky k spoločnému menovateľovi, rozložme ich na faktoring. Čo ak vyjdú rovnaké zátvorky? S prvým menovateľom je to jednoduché:

\[((x)^(2))+8x-9=\vľavo(x-1 \vpravo)\vľavo(x+9 \vpravo)\]

Druhý je trochu náročnejší. Neváhajte pridať konštantný faktor do zátvorky, kde sa objaví zlomok. Pamätajte: pôvodný polynóm mal celočíselné koeficienty, takže je veľká šanca, že faktorizácia bude mať celočíselné koeficienty (v skutočnosti bude mať vždy, pokiaľ diskriminant nie je iracionálny).

\[\začiatok(zarovnanie) & 3((x)^(2))-5x+2=3\vľavo(x-1 \vpravo)\vľavo(x-\frac(2)(3) \vpravo)= \\ & =\left(x-1 \right)\left(3x-2 \right) \end(zarovnať)\]

Ako vidíte, existuje spoločná zátvorka: $\left(x-1 \right)$. Vrátime sa k nerovnosti a oba zlomky privedieme k spoločnému menovateľovi:

\[\začiatok(zarovnanie) & \frac(1)(\vľavo(x-1 \vpravo)\vľavo(x+9 \vpravo))-\frac(1)(\vľavo(x-1 \vpravo)\ left(3x-2 \right))\ge 0; \\ & \frac(1\cdot \left(3x-2 \right)-1\cdot \left(x+9 \right))(\left(x-1 \right)\left(x+9 \right )\left(3x-2 \right))\ge 0; \\ & \frac(3x-2-x-9)(\vľavo(x-1 \vpravo)\vľavo(x+9 \vpravo)\vľavo(3x-2 \vpravo))\ge 0; \\ & \frac(2x-11)(\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right))\ge 0; \\ \end(zarovnať)\]

Menovateľa prirovnáme k nule:

\[\začiatok(zarovnanie) & \vľavo(x-1 \vpravo)\vľavo(x+9 \vpravo)\vľavo(3x-2 \vpravo)=0; \\ & x_(1)^(*)=1;\ x_(2)^(*)=-9;\ x_(3)^(*)=\frac(2)(3) \\ \end( zarovnať)\]

Žiadne násobky alebo zhodné korene. Na riadku označíme štyri čísla:

Umiestňujeme značky:

Odpoveď zapíšeme.

Odpoveď: $x\in \left(-\infty ;-9 \right)\bigcup \left((2)/(3)\;;1 \right)\bigcup \left[ 5,5;+\infty \ right) $.

V tejto lekcii sa dozviete o racionálnych nerovnostiach a ich systémoch. Systém racionálnych nerovníc je riešený pomocou ekvivalentných transformácií. Zvažuje sa definícia ekvivalencie, metóda nahradenia zlomkovej-racionálnej nerovnosti kvadratickou a tiež chápe rozdiel medzi nerovnosťou a rovnicou a ako sa vykonávajú ekvivalentné transformácie.

Algebra 9. ročník

Záverečná kontrola kurzu algebry 9. ročníka

Racionálne nerovnosti a ich systémy. Systémy racionálnych nerovností.

1.1 Abstraktné.

1. Ekvivalentné transformácie racionálnych nerovností.

Rozhodnite sa racionálna nerovnosť znamená nájsť všetky jeho riešenia. Na rozdiel od rovnice pri riešení nerovnosti spravidla vzniká nekonečný počet riešení. Nespočetné množstvo riešení nie je možné overiť substitúciou. Preto musíte transformovať pôvodnú nerovnosť tak, aby ste v každom nasledujúcom riadku dostali nerovnosť s rovnakou sadou riešení.

Racionálne nerovnosti sa dá vyriešiť len s pomocou ekvivalent alebo ekvivalentné transformácie. Takéto transformácie nenarúšajú množinu riešení.

Definícia. Racionálne nerovnosti volal ekvivalent, ak sa množiny ich riešení zhodujú.

Naznačovať rovnocennosť použite znamenie

2. Riešenie sústavy nerovníc

Prvá a druhá nerovnosť sú zlomkové racionálne nerovnosti. Metódy na ich riešenie sú prirodzeným pokračovaním metód riešenia lineárnych a kvadratických nerovníc.

Posuňme čísla na pravej strane doľava s opačným znamienkom.

Výsledkom je, že pravá strana zostane 0. Táto transformácia je ekvivalentná. To je označené znakom

Vykonajte akcie, ktoré predpisuje algebra. Odčítajte „1“ v prvej nerovnosti a „2“ v druhej.

3. Riešenie nerovníc intervalovou metódou

1) Predstavme si funkciu. Musíme vedieť, kedy je táto funkcia menšia ako 0.

2) Nájdite doménu definície funkcie: menovateľ by nemal obsahovať 0. „2“ je bod zlomu. Pri x=2 funkcia nie je definovaná.

3) Nájdite korene funkcie. Funkcia sa rovná 0, ak čitateľ obsahuje 0.

Umiestnené body rozdeľujú číselnú os na tri intervaly - sú to intervaly konštantného znamienka. V každom intervale si funkcia zachováva svoje znamienko. Určme znamienko na prvom intervale. Dosadíme nejakú hodnotu. Napríklad 100. Je jasné, že čitateľ aj menovateľ sú väčšie ako 0. To znamená, že celý zlomok je kladný.

Určme znamienka na zostávajúcich intervaloch. Pri prechode bodom x=2 zmení znamienko iba menovateľ. To znamená, že celý zlomok zmení znamienko a bude záporný. Urobme podobnú úvahu. Pri prechode bodom x=-3 zmení znamienko iba čitateľ. To znamená, že zlomok zmení znamienko a bude kladný.

Zvoľme interval zodpovedajúci podmienke nerovnosti. Vytieňme to a napíšme to ako nerovnosť

4. Riešenie nerovnosti pomocou kvadratickej nerovnosti

Dôležitý fakt.

Pri porovnávaní s 0 (v prípade striktnej nerovnosti) možno zlomok nahradiť súčinom čitateľa a menovateľa, prípadne čitateľa či menovateľa zameniť.

Je to tak preto, že všetky tri nerovnosti sú splnené za predpokladu, že u a v iné znamenie. Tieto tri nerovnosti sú ekvivalentné.

Využime túto skutočnosť a nahraďme zlomkovo-racionálnu nerovnosť kvadratickou.

Poďme vyriešiť kvadratickú nerovnosť.

Predstavme si kvadratickú funkciu. Nájdime jeho korene a zostrojme náčrt jeho grafu.

To znamená, že vetvy paraboly smerujú nahor. V rámci intervalu koreňov si funkcia zachováva svoje znamienko. Je negatívna.

Mimo intervalu koreňov je funkcia kladná.

Riešenie prvej nerovnosti:

5. Riešenie nerovnosti

Predstavme si funkciu:

Nájdite jeho intervaly konštantného znamienka:

Aby sme to dosiahli, nájdeme korene a body diskontinuity v oblasti definície funkcie. Vždy vypichneme body zlomu. (x=3/2) Korene vykopeme v závislosti od znamienka nerovnosti. Naša nerovnosť je prísna. Preto vykopeme koreň.

Umiestnime znaky:

Zapíšme si riešenie:

Dokončime riešenie systému. Nájdite priesečník množiny riešení prvej nerovnosti a množiny riešení druhej nerovnosti.

Riešiť sústavu nerovníc znamená nájsť priesečník množiny riešení prvej nerovnosti a množiny riešení druhej nerovnosti. Preto po oddelenom vyriešení prvej a druhej nerovnosti musíte výsledky získané v jednom systéme zapísať.

Znázornime riešenie prvej nerovnosti nad osou Ox.

Zachovanie vášho súkromia je pre nás dôležité. Z tohto dôvodu sme vyvinuli Zásady ochrany osobných údajov, ktoré popisujú, ako používame a uchovávame vaše informácie. Prečítajte si naše postupy ochrany osobných údajov a ak máte nejaké otázky, dajte nám vedieť.

Zhromažďovanie a používanie osobných údajov

Osobné údaje sú údaje, ktoré možno použiť na identifikáciu alebo kontaktovanie konkrétnej osoby.

Keď nás budete kontaktovať, môžete byť kedykoľvek požiadaní o poskytnutie svojich osobných údajov.

Nižšie sú uvedené niektoré príklady typov osobných údajov, ktoré môžeme zhromažďovať, a ako môžeme tieto informácie použiť.

Aké osobné údaje zhromažďujeme:

  • Keď odošlete žiadosť na stránke, môžeme zhromažďovať rôzne informácie vrátane vášho mena, telefónneho čísla, adresy Email atď.

Ako používame vaše osobné údaje:

  • Nami zozbierané osobné informácie nám umožňuje kontaktovať vás a informovať vás o jedinečných ponukách, akciách a iných akciách a pripravovaných akciách.
  • Z času na čas môžeme použiť vaše osobné údaje na zasielanie dôležitých upozornení a komunikácie.
  • Osobné údaje môžeme použiť aj na interné účely, ako je vykonávanie auditov, analýza údajov a rôzne výskumy, aby sme zlepšili služby, ktoré poskytujeme, a poskytli vám odporúčania týkajúce sa našich služieb.
  • Ak sa zúčastníte žrebovania o ceny, súťaže alebo podobnej propagačnej akcie, môžeme použiť informácie, ktoré nám poskytnete, na správu takýchto programov.

Sprístupnenie informácií tretím stranám

Informácie, ktoré od vás dostaneme, nezverejňujeme tretím stranám.

Výnimky:

  • V prípade potreby - v súlade so zákonom, súdnym konaním, súdnym konaním a/alebo na základe žiadostí verejnosti alebo žiadostí od vládne agentúry na území Ruskej federácie - zverejnite svoje osobné údaje. Môžeme tiež zverejniť informácie o vás, ak usúdime, že takéto zverejnenie je potrebné alebo vhodné na účely bezpečnosti, presadzovania práva alebo na iné účely verejného významu.
  • V prípade reorganizácie, zlúčenia alebo predaja môžeme osobné údaje, ktoré zhromažďujeme, preniesť na príslušnú nástupnícku tretiu stranu.

Ochrana osobných údajov

Prijímame opatrenia – vrátane administratívnych, technických a fyzických – na ochranu vašich osobných údajov pred stratou, krádežou a zneužitím, ako aj neoprávneným prístupom, zverejnením, zmenou a zničením.

Rešpektovanie vášho súkromia na úrovni spoločnosti

Aby sme zaistili bezpečnosť vašich osobných údajov, informujeme našich zamestnancov o štandardoch ochrany osobných údajov a bezpečnosti a prísne presadzujeme postupy ochrany osobných údajov.

O riešenie lineárnych nerovností Existuje len jeden veľký trik: pri delení (alebo násobení) nerovnosti záporným číslom musíte zmeniť znamienko nerovnosti. Zmena znamienka nerovnosti znamená zmenu znamienka „menšie ako“ na znamienko „väčšie ako“ alebo naopak. V tomto prípade nie je potrebné nikde meniť znamienka plus a mínus a obísť predtým naučené matematické pravidlá. Ak vydelíme alebo vynásobíme nerovnosť kladným číslom, nie je potrebné meniť znamienko nerovnosti. Inak je riešenie lineárnych nerovníc úplne totožné s riešením lineárnych rovníc.

Pri lineárnych a akýchkoľvek iných racionálnych nerovnostiach v žiadnom prípade nenásobte ani nerozdeľujte ľavú alebo pravú stranu nerovnosti na výrazy obsahujúce premennú (okrem prípadov, keď je daný výraz kladný alebo záporný na celej číselnej osi, v takom prípade , pri delení vždy záporným výrazom treba znamienko nerovnosti zmeniť a pri delení vždy kladným výrazom znamienko nerovnosti zachovať).

Riešenie nerovností tvaru:

Vykonáva sa pomocou intervalová metóda, ktorá je nasledovná:

  1. Nakreslíme súradnicovú čiaru, na ktorú nakreslíme všetky čísla a i. Tieto čísla, usporiadané vo vzostupnom poradí, rozdelia súradnicovú čiaru na ( n+1) intervaly konštantného znamienka funkcie f(X).
  2. Po určení znamenia f(X) v ktoromkoľvek bode každého intervalu (zvyčajne sa tento bod volí pre pohodlie aritmetických operácií) určíme znamienko funkcie na každom intervale. Hlavnou vecou nie je dosadiť do funkcie hranice samotných intervalov.
  3. Ako odpoveď zapíšeme všetky tie intervaly, ktorých znamienko funkcie zodpovedá hlavnej podmienke nerovnosti.

Treba tiež poznamenať, že nie je potrebné skúmať znamienko funkcie na každom intervale dosadením určitej hodnoty z tohto intervalu. Stačí takto určiť znamienko funkcie len na jednom intervale (zvyčajne úplne vpravo) a potom pohybom z tohto intervalu doľava po číselnej osi môžete striedať znamienka intervalov podľa princíp:

  • Ak je v zátvorke, z ktorej je prevzaté číslo, cez ktoré ideme zvláštny sa mení.
  • A ak je príslušná zátvorka v dokonca stupňa, potom pri prechode cez príslušný bod znak nerovnosti nemení.

V tomto prípade je potrebné vziať do úvahy aj nasledujúce poznámky:

  • Pri striktných nerovnostiach (menšie alebo väčšie ako znamienka) nie sú hranice intervalov nikdy zahrnuté v odpovedi a na číselnej osi sú zobrazené ako bodky.
  • V neprísnych nerovnostiach (znaky „menšie alebo rovné“ alebo „väčšie alebo rovné“) tie hranice intervalov, ktoré sú prevzaté z čitateľa vždy odpovedať a sú znázornené tieňovanými bodmi (pretože v týchto bodoch funkcia skutočne zaniká, čo spĺňa podmienku).
  • Ale hranice prevzaté z menovateľa v neprísnych nerovnostiach sú vždy znázornené prepichnutými bodmi a v odpoveď nie je nikdy zahrnutá(keďže v týchto bodoch ide menovateľ na nulu, čo je neprijateľné).
  • Pri všetkých nerovnostiach, ak je rovnaká zátvorka v čitateli aj menovateli, potom nemôžete zmenšiť o túto zátvorku. Musíte znázorniť príslušný bod ako vyrazený na osi a nezabudnite ho vylúčiť z odpovede. V tomto prípade pri striedaní znakov intervalov pri prechode cez tento bod nie je potrebné meniť znak.

Takže ešte raz to najdôležitejšie: Pri písaní konečnej odpovede v nerovnostiach nestrácajte jednotlivé body, ktoré nerovnici spĺňajú (to sú korene čitateľa v neprísnych nerovnostiach), a nezabudnite z odpovede vylúčiť všetky korene menovateľa vo všetkých nerovnosti.

Pri riešení racionálnych nerovníc zložitejšieho tvaru, ako je uvedené vyššie, je potrebné ich najskôr algebraickými transformáciami zredukovať presne na tento tvar a potom použiť metódu intervalov, berúc do úvahy všetky už opísané jemnosti. Môžeme teda navrhnúť nasledujúci algoritmus na riešenie racionálnych nerovností:

  1. Všetky členy, zlomky a ďalšie výrazy musia byť presunuté na ľavú stranu nerovnosti.
  2. V prípade potreby zredukujte zlomky na spoločného menovateľa.
  3. Rozložte čitateľa a menovateľa výsledného zlomku na faktory.
  4. Výslednú nerovnosť riešte intervalovou metódou.

V rovnakom čase riešenie racionálnych nerovností nie je dovolené:

  1. Vynásobte zlomky krížom krážom.
  2. Rovnako ako v rovniciach, nemôžete vypočítať premennú ani na jednej strane nerovnosti. Ak takéto faktory existujú, potom po prenesení všetkých výrazov na ľavú stranu nerovnosti je potrebné ich vyňať zo zátvoriek a potom vziať do úvahy tie body, ktoré dajú po konečnom rozklade výsledného výrazu na faktory.
  3. Zvážte čitateľa a menovateľa zlomku oddelene.

Rovnako ako v iných témach z matematiky, pri riešení racionálnych nerovností môžete použiť variabilná náhradná metóda. Hlavnou vecou je nezabudnúť, že po zavedení náhrady by sa mal nový výraz zjednodušiť a nemal by obsahovať starú premennú. Okrem toho nesmiete zabudnúť vykonať spätnú výmenu.

Pri rozhodovaní systémy racionálnych nerovností treba postupne riešiť všetky nerovnosti v systéme. Systém vyžaduje splnenie dvoch alebo viacerých podmienok a hľadáme tie hodnoty neznámej veličiny, ktoré spĺňajú všetky podmienky naraz. Preto je v odpovedi na sústavu nerovníc potrebné uviesť spoločné časti všetkých riešení jednotlivých nerovníc (alebo spoločné časti všetkých tieňovaných intervalov zobrazujúcich odpovede na každú jednotlivú nerovnosť).

Pri rozhodovaní množiny racionálnych nerovností tiež postupne vyriešiť každú z nerovností. Kolekcia vyžaduje nájdenie všetkých hodnôt premennej, ktoré spĺňajú aspoň jednu z podmienok. To znamená, ktorákoľvek z podmienok, niekoľko podmienok alebo všetky podmienky spolu. V odpovedi pre množinu nerovníc sú uvedené všetky časti všetkých riešení jednotlivých nerovníc (alebo všetky časti všetkých tieňovaných intervalov reprezentujúcich odpovede na každú jednotlivú nerovnosť).

Riešenie niektorých typov nerovností modulmi

Nerovnosti s modulmi môžu a mali by byť vyriešené postupným odhaľovaním modulov v intervaloch ich konštantného znamienka. Preto musíte urobiť približne to isté ako pri riešení rovníc s modulmi (viac o tom nižšie). Existuje však niekoľko relatívne jednoduchých prípadov, v ktorých je riešenie nerovnosti s modulom zredukované na jednoduchší algoritmus. Napríklad riešenie nerovnosti tvaru:

Prichádza k riešeniu systémov:

Najmä nerovnosť:

systém:

Ak v podobnej nerovnosti nahradíme znak „menej“ znakom „viac“:

Potom sa jeho rozhodnutie scvrkáva na rozhodnutie totality:

Najmä nerovnosť:

Dá sa nahradiť ekvivalentom totality:

Preto je potrebné si uvedomiť, že pre nerovnosť „modul je menší“ dostaneme systém, kde musia byť splnené obe podmienky súčasne a pre nerovnosť „modul je väčší“ dostaneme množinu, v ktorej musí byť splnená ktorákoľvek z podmienok. .

Pri riešení racionálnych nerovností s modulom tvaru:

Odporúča sa prejsť na nasledujúcu ekvivalentnú racionálnu nerovnosť bez modulu:

Takáto nerovnosť sa nedá vyriešiť extrakciou koreňového adresára (ak poctivo rozbalíte koreň, musíte moduly nainštalovať znova a vrátite sa na začiatok; ak na moduly zabudnete, rovná sa to, že na ne jednoducho zabudnete na samom začiatku, a to je, samozrejme, chyba). Všetky zátvorky musia byť posunuté doľava a bez otvárania zátvoriek v žiadnom prípade použiť vzorec pre rozdiel štvorcov.

Zopakujme si to ešte raz pre riešenia všetkých ostatných typov nerovností s modulmi Okrem vyššie uvedených je potrebné odhaliť všetky moduly zahrnuté v nerovnosti na intervaloch ich konštantného znamienka a vzniknuté nerovnosti vyriešiť. Pripomeňme si to podrobnejšie všeobecný význam tento algoritmus:

  • Najprv nájdeme body na číselnej osi, v ktorých každý z výrazov pod modulom zmizne.
  • Ďalej rozdelíme celú číselnú os na intervaly medzi výslednými bodmi a preskúmame znamienko každého zo submodulárnych výrazov na každom intervale. Všimnite si, že ak chcete určiť znamienko výrazu, musíte do neho nahradiť akúkoľvek hodnotu premennej z intervalu, okrem hraničných bodov. Vyberte premenné hodnoty, ktoré sa dajú ľahko nahradiť.
  • Ďalej na každom výslednom intervale odhalíme všetky moduly v pôvodnej nerovnosti v súlade s ich znamienkami na tomto intervale a vyriešime výslednú obyčajnú racionálnu nerovnosť, pričom zohľadníme všetky pravidlá a jemnosti riešenia obyčajných nerovností bez modulov.
  • Riešenie každej z nerovností získaných na konkrétnom intervale sa spojí do systému so samotným intervalom a všetky takéto systémy sa spoja do množiny. Z riešení všetkých nerovníc teda vyberieme len tie časti, ktoré boli zahrnuté v intervale, v ktorom bola táto nerovnica získaná a všetky tieto časti zapíšeme do konečnej odpovede.


Súvisiace články: