Ecuații logaritmice elementare. Cazuri de diferite motive. Exemple de rezolvare a logaritmilor

Instrucțiuni

Scrieți expresia logaritmică dată. Dacă expresia folosește logaritmul lui 10, atunci notația sa este scurtată și arată astfel: lg b este logaritmul zecimal. Dacă logaritmul are ca bază numărul e, atunci scrieți expresia: ln b – logaritm natural. Se înțelege că rezultatul oricărei este puterea la care trebuie ridicat numărul de bază pentru a obține numărul b.

Când găsiți suma a două funcții, trebuie pur și simplu să le diferențiați una câte una și să adăugați rezultatele: (u+v)" = u"+v";

Atunci când găsiți derivata produsului a două funcții, este necesar să înmulțiți derivata primei funcții cu a doua și să adăugați derivata celei de-a doua funcții înmulțită cu prima funcție: (u*v)" = u"*v +v"*u;

Pentru a afla derivata coeficientului a doua functii, este necesar sa scadem din produsul derivatei dividendului inmultit cu functia divizor produsul derivatei divizorului inmultit cu functia dividendului si impartiti toate acestea prin funcția divizor la pătrat. (u/v)" = (u"*v-v"*u)/v^2;

Dacă este dată o funcție complexă, atunci este necesar să se înmulțească derivata funcției interne și derivata celei externe. Fie y=u(v(x)), apoi y"(x)=y"(u)*v"(x).

Folosind rezultatele obținute mai sus, puteți diferenția aproape orice funcție. Deci, să ne uităm la câteva exemple:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *X));
Există, de asemenea, probleme care implică calcularea derivatei la un punct. Fie dată funcția y=e^(x^2+6x+5), trebuie să găsiți valoarea funcției în punctul x=1.
1) Aflați derivata funcției: y"=e^(x^2-6x+5)*(2*x +6).

2) Calculați valoarea funcției la un punct dat y"(1)=8*e^0=8

Video pe tema

Sfaturi utile

Învață tabelul derivatelor elementare. Acest lucru va economisi timp semnificativ.

Surse:

  • derivată a unei constante

Deci, care este diferența între ecuație rațională din rațional? Dacă variabila necunoscută se află sub semnul rădăcină pătrată, atunci ecuația este considerată irațională.

Instrucțiuni

Principala metodă de rezolvare a unor astfel de ecuații este metoda de construire a ambelor părți ecuațiiîntr-un pătrat. In orice caz. acest lucru este firesc, primul lucru pe care trebuie să-l faci este să scapi de semn. Această metodă nu este dificilă din punct de vedere tehnic, dar uneori poate duce la probleme. De exemplu, ecuația este v(2x-5)=v(4x-7). Prin pătrarea ambelor părți se obține 2x-5=4x-7. Rezolvarea unei astfel de ecuații nu este dificilă; x=1. Dar numărul 1 nu va fi dat ecuații. De ce? Înlocuiți unul în ecuație în loc de valoarea lui x Și părțile din dreapta și din stânga vor conține expresii care nu au sens. Această valoare nu este valabilă pentru o rădăcină pătrată. Prin urmare, 1 este o rădăcină străină și, prin urmare, această ecuație nu are rădăcini.

Deci, o ecuație irațională se rezolvă folosind metoda punerii la pătrat a ambelor laturi. Și după ce am rezolvat ecuația, este necesar să tăiați rădăcinile străine. Pentru a face acest lucru, înlocuiți rădăcinile găsite în ecuația originală.

Luați în considerare altul.
2х+vх-3=0
Desigur, această ecuație poate fi rezolvată folosind aceeași ecuație ca cea anterioară. Mutați compuși ecuații, care nu au rădăcină pătrată, în partea dreaptă și apoi folosiți metoda pătratului. rezolvați ecuația rațională și rădăcinile rezultate. Dar și altul, mai elegant. Introduceți o nouă variabilă; vх=y. În consecință, veți primi o ecuație de forma 2y2+y-3=0. Adică de obicei ecuație pătratică. Găsește-i rădăcinile; y1=1 și y2=-3/2. Apoi, rezolvă două ecuații vх=1; vх=-3/2. A doua ecuație nu are rădăcini din prima găsim că x=1. Nu uitați să verificați rădăcinile.

Rezolvarea identităților este destul de simplă. Pentru a face acest lucru, este necesar să efectuați transformări identice până la atingerea scopului stabilit. Astfel, cu ajutorul unor operații aritmetice simple, se va rezolva sarcina depusă.

Vei avea nevoie

  • - hartie;
  • - pix.

Instrucțiuni

Cele mai simple dintre astfel de transformări sunt înmulțirile algebrice abreviate (cum ar fi pătratul sumei (diferența), diferența de pătrate, suma (diferența), cubul sumei (diferența)). În plus, sunt multe și formule trigonometrice, care sunt în esență aceleași identități.

Într-adevăr, pătratul sumei a doi termeni este egal cu pătratul primului plus de două ori produsul primului cu al doilea și plus pătratul celui de-al doilea, adică (a+b)^2= (a+ b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Simplificați pe amândouă

Principii generale ale soluției

Repetați dintr-un manual de analiză matematică sau matematică superioară ceea ce este o integrală definită. După cum se știe, soluția integrala definita există o funcţie a cărei derivată dă un integrand. Această funcție se numește antiderivat. Pe baza acestui principiu se construiesc integralele principale.
Determinați după tipul de integrand care dintre integralele de tabel este potrivită în acest caz. Nu este întotdeauna posibil să determinați acest lucru imediat. Adesea, forma tabulară devine vizibilă numai după mai multe transformări pentru a simplifica integrandul.

Metoda de înlocuire a variabilei

Dacă funcția integrand este functie trigonometrica, al cărui argument conține un polinom, apoi încercați să utilizați metoda de înlocuire a variabilei. Pentru a face acest lucru, înlocuiți polinomul din argumentul integrandului cu o nouă variabilă. Pe baza relației dintre variabilele noi și vechi, determinați noile limite de integrare. Prin diferențierea acestei expresii, găsiți noua diferență în . Deci vei primi noul fel a integralei anterioare, apropiată sau chiar corespunzătoare oricărui tabel.

Rezolvarea integralelor de al doilea fel

Dacă integrala este o integrală de al doilea fel, o formă vectorială a integrandului, atunci va trebui să utilizați regulile pentru trecerea de la aceste integrale la cele scalare. O astfel de regulă este relația Ostrogradsky-Gauss. Această lege ne permite să trecem de la fluxul rotoric al unei anumite funcții vectoriale la integrala triplă peste divergența unui câmp vectorial dat.

Înlocuirea limitelor de integrare

După găsirea antiderivatei, este necesar să se substituie limitele integrării. În primul rând, înlocuiți valoarea limitei superioare în expresia pentru antiderivată. Vei primi un număr. Apoi, scădeți din numărul rezultat un alt număr obținut limita inferioaraîntr-un antiderivat. Dacă una dintre limitele integrării este infinitul, atunci când o înlocuiți în funcția antiderivată, este necesar să mergeți la limită și să găsiți spre ce tinde expresia.
Dacă integrala este bidimensională sau tridimensională, atunci va trebui să reprezentați geometric limitele integrării pentru a înțelege cum să evaluați integrala. Într-adevăr, în cazul, de exemplu, a unei integrale tridimensionale, limitele integrării pot fi planuri întregi care limitează volumul care este integrat.

În această lecție vom trece în revistă faptele teoretice de bază despre logaritmi și vom lua în considerare rezolvarea celor mai simple ecuații logaritmice.

Să vă reamintim definiție centrală- definirea logaritmului. Are legătură cu decizia ecuație exponențială. Această ecuație are o singură rădăcină, se numește logaritmul lui b la baza a:

Definiție:

Logaritmul lui b la baza a este exponentul la care trebuie ridicată baza a pentru a obține b.

Să vă reamintim identitate logaritmică de bază.

Expresia (expresia 1) este rădăcina ecuației (expresia 2). Înlocuiți valoarea x din expresia 1 în loc de x în expresia 2 și obțineți identitatea logaritmică principală:

Deci vedem că fiecare valoare este asociată cu o valoare. Notăm b cu x(), c cu y și astfel obținem o funcție logaritmică:

De exemplu:

Să ne amintim proprietățile de bază ale funcției logaritmice.

Să fim atenți încă o dată, aici, deoarece sub logaritm poate exista o expresie strict pozitivă, ca bază a logaritmului.

Orez. 1. Graficul unei funcții logaritmice cu baze diferite

Graficul funcției la este afișat cu negru. Orez. 1. Dacă argumentul crește de la zero la infinit, funcția crește de la minus la plus infinit.

Graficul funcției la este afișat cu roșu. Orez. 1.

Proprietățile acestei funcții:

Domeniu: ;

Interval de valori: ;

Funcția este monotonă în întregul său domeniu de definire. Când crește monoton (strict), o valoare mai mare a argumentului corespunde unei valori mai mari a funcției. Când monoton (strict) scade, o valoare mai mare a argumentului corespunde unei valori mai mici a funcției.

Proprietățile funcției logaritmice sunt cheia pentru rezolvarea unei varietăți de ecuații logaritmice.

Să luăm în considerare cea mai simplă ecuație logaritmică, toate celelalte ecuații logaritmice, de regulă, se reduce la această formă.

Deoarece bazele logaritmilor și logaritmii înșiși sunt egale, funcțiile de sub logaritm sunt, de asemenea, egale, dar nu trebuie să pierdem domeniul de definiție. Doar un număr pozitiv poate apărea sub logaritm, avem:

Am aflat că funcțiile f și g sunt egale, deci este suficient să alegeți orice inegalitate pentru a respecta ODZ.

Deci am primit sistem mixt, în care există o ecuație și o inegalitate:

De regulă, nu este necesar să se rezolve o inegalitate, este suficient să se rezolve ecuația și să se înlocuiască rădăcinile găsite în inegalitate, efectuând astfel o verificare.

Să formulăm o metodă pentru rezolvarea celor mai simple ecuații logaritmice:

Egalizarea bazelor logaritmilor;

Echivalează funcțiile sublogaritmice;

Efectuați verificarea.

Să ne uităm la exemple specifice.

Exemplul 1 - rezolvați ecuația:

Bazele logaritmilor sunt inițial egale, avem dreptul de a echivala expresii sublogaritmice, nu uitați de ODZ, alegem primul logaritm pentru a compune inegalitatea:

Exemplul 2 - rezolvați ecuația:

Această ecuație diferă de cea anterioară prin faptul că bazele logaritmilor sunt mai mici decât unu, dar acest lucru nu afectează soluția în niciun fel:

Să găsim rădăcina și să o înlocuim în inegalitate:

Am primit o inegalitate incorectă, ceea ce înseamnă că rădăcina găsită nu satisface ODZ.

Exemplul 3 - rezolvați ecuația:

Bazele logaritmilor sunt inițial egale, avem dreptul de a echivala expresii sublogaritmice, nu uitați de ODZ, alegem al doilea logaritm pentru a compune inegalitatea:

Să găsim rădăcina și să o înlocuim în inegalitate:

Evident, doar prima rădăcină satisface DD.

După cum știți, atunci când înmulțiți expresii cu puteri, exponenții lor se adună întotdeauna (a b *a c = a b+c). Această lege matematică a fost derivată de Arhimede, iar mai târziu, în secolul al VIII-lea, matematicianul Virasen a creat un tabel cu exponenți întregi. Ei au fost cei care au servit pentru descoperirea ulterioară a logaritmilor. Exemple de utilizare a acestei funcții pot fi găsite aproape peste tot unde trebuie să simplificați înmulțirea greoaie prin simplă adunare. Dacă petreceți 10 minute citind acest articol, vă vom explica ce sunt logaritmii și cum să lucrați cu ei. Într-un limbaj simplu și accesibil.

Definiție în matematică

Un logaritm este o expresie de următoarea formă: log a b=c, adică logaritmul oricărui număr nenegativ (adică orice pozitiv) „b” la baza sa „a” este considerat a fi puterea „c ” la care trebuie ridicată baza „a” pentru a obține în final valoarea „b”. Să analizăm logaritmul folosind exemple, să presupunem că există o expresie log 2 8. Cum să găsim răspunsul? Este foarte simplu, trebuie să găsești o putere astfel încât de la 2 la puterea necesară să obții 8. După ce faci niște calcule în capul tău, obținem numărul 3! Și asta este adevărat, pentru că 2 la puterea lui 3 dă răspunsul ca 8.

Tipuri de logaritmi

Pentru mulți elevi și studenți, acest subiect pare complicat și de neînțeles, dar de fapt logaritmii nu sunt atât de înfricoșători, principalul lucru este să le înțelegeți sensul general și să vă amintiți proprietățile și unele reguli. Se află trei specii individuale expresii logaritmice:

  1. Logaritmul natural ln a, unde baza este numărul Euler (e = 2,7).
  2. Decimală a, unde baza este 10.
  3. Logaritmul oricărui număr b la baza a>1.

Fiecare dintre ele este rezolvată într-un mod standard, incluzând simplificarea, reducerea și reducerea ulterioară la un singur logaritm folosind teoreme logaritmice. Pentru a obține valorile corecte ale logaritmilor, ar trebui să vă amintiți proprietățile acestora și succesiunea acțiunilor atunci când le rezolvați.

Reguli și unele restricții

În matematică, există mai multe reguli-constrângeri care sunt acceptate ca axiomă, adică nu sunt supuse discuției și sunt adevărul. De exemplu, este imposibil să împărțiți numerele la zero și, de asemenea, este imposibil să extrageți rădăcina pare a numerelor negative. Logaritmii au, de asemenea, propriile reguli, după care puteți învăța cu ușurință să lucrați chiar și cu expresii logaritmice lungi și încăpătoare:

  • Baza „a” trebuie să fie întotdeauna mai mare decât zero și nu egală cu 1, altfel expresia își va pierde sensul, deoarece „1” și „0” în orice grad sunt întotdeauna egale cu valorile lor;
  • dacă a > 0, atunci a b >0, se dovedește că și „c” trebuie să fie mai mare decât zero.

Cum se rezolvă logaritmii?

De exemplu, sarcina este de a găsi răspunsul la ecuația 10 x = 100. Acest lucru este foarte ușor, trebuie să alegeți o putere prin ridicarea numărului zece la care obținem 100. Acesta, desigur, este 10 2 = 100.

Acum să reprezentăm această expresie în formă logaritmică. Obținem log 10 100 = 2. La rezolvarea logaritmilor, toate acțiunile practic converg pentru a găsi puterea la care este necesar să se introducă baza logaritmului pentru a obține un număr dat.

Pentru a determina cu exactitate valoarea unui grad necunoscut, trebuie să învățați cum să lucrați cu un tabel de grade. Arata cam asa:

După cum puteți vedea, unii exponenți pot fi ghiciți intuitiv dacă aveți o minte tehnică și cunoștințe despre tabla înmulțirii. Cu toate acestea, pentru valori mai mari veți avea nevoie de o masă de putere. Poate fi folosit chiar și de cei care nu știu nimic despre subiecte matematice complexe. Coloana din stânga conține numere (baza a), rândul de sus de numere este valoarea puterii c la care este ridicat numărul a. La intersecție, celulele conțin valorile numerice care sunt răspunsul (a c =b). Să luăm, de exemplu, prima celulă cu numărul 10 și să o pătratăm, obținem valoarea 100, care este indicată la intersecția celor două celule ale noastre. Totul este atât de simplu și ușor încât până și cel mai adevărat umanist va înțelege!

Ecuații și inegalități

Rezultă că în anumite condiții exponentul este logaritmul. Prin urmare, orice expresii numerice matematice pot fi scrise ca o egalitate logaritmică. De exemplu, 3 4 =81 poate fi scris ca logaritmul de bază 3 al lui 81 egal cu patru (log 3 81 = 4). Pentru puteri negative regulile sunt aceleași: 2 -5 = 1/32 îl scriem ca logaritm, obținem log 2 (1/32) = -5. Una dintre cele mai fascinante secțiuni ale matematicii este subiectul „logaritmilor”. Vom privi mai jos exemple și soluții de ecuații, imediat după studierea proprietăților acestora. Acum să vedem cum arată inegalitățile și cum să le distingem de ecuații.

Dată o expresie de următoarea formă: log 2 (x-1) > 3 - este inegalitatea logaritmică, deoarece valoarea necunoscută „x” se află sub semnul logaritmului. Și, de asemenea, în expresie sunt comparate două mărimi: logaritmul numărului dorit la baza doi este mai mare decât numărul trei.

Cea mai importantă diferență dintre ecuațiile logaritmice și inegalități este că ecuațiile cu logaritmi (de exemplu, logaritmul 2 x = √9) implică una sau mai multe valori numerice specifice în răspuns, în timp ce la rezolvarea unei inegalități, atât domeniul acceptabil. valorile și punctele sunt determinate întrerupând această funcție. În consecință, răspunsul nu este un simplu set de numere individuale, ca în răspunsul la o ecuație, ci o serie continuă sau un set de numere.

Teoreme de bază despre logaritmi

La rezolvarea sarcinilor primitive de găsire a valorilor logaritmului, este posibil ca proprietățile acestuia să nu fie cunoscute. Cu toate acestea, atunci când vine vorba de ecuații sau inegalități logaritmice, în primul rând, este necesar să înțelegem clar și să aplici în practică toate proprietățile de bază ale logaritmilor. Ne vom uita la exemple de ecuații mai târziu, să ne uităm mai întâi la fiecare proprietate în detaliu.

  1. Identitatea principală arată astfel: a logaB =B. Se aplică numai atunci când a este mai mare decât 0, nu este egal cu unu și B este mai mare decât zero.
  2. Logaritmul produsului poate fi reprezentat în următoarea formulă: log d (s 1 * s 2) = log d s 1 + log d s 2. În acest caz condiție prealabilă este: d, s 1 și s 2 > 0; a≠1. Puteți da o dovadă pentru această formulă logaritmică, cu exemple și soluție. Fie log a s 1 = f 1 și log a s 2 = f 2, apoi a f1 = s 1, a f2 = s 2. Obținem că s 1 * s 2 = a f1 *a f2 = a f1+f2 (proprietățile lui grade ), și apoi prin definiție: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, care este ceea ce trebuia demonstrat.
  3. Logaritmul coeficientului arată astfel: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Teorema sub forma unei formule preia următoarea vedere: log a q b n = n/q log a b.

Această formulă se numește „proprietatea gradului de logaritm”. Seamănă cu proprietățile gradelor obișnuite și nu este surprinzător, deoarece toată matematica se bazează pe postulate naturale. Să ne uităm la dovada.

Fie log a b = t, se dovedește a t =b. Dacă ridicăm ambele părți la puterea m: a tn = b n ;

dar deoarece a tn = (a q) nt/q = b n, prin urmare log a q b n = (n*t)/t, atunci log a q b n = n/q log a b. Teorema a fost demonstrată.

Exemple de probleme și inegalități

Cele mai comune tipuri de probleme pe logaritmi sunt exemple de ecuații și inegalități. Ele se găsesc în aproape toate cărțile de probleme și sunt, de asemenea, o parte obligatorie a examenelor de matematică. Pentru admitere la universitate sau promovare examenele de admitere la matematică trebuie să știi să rezolvi corect astfel de probleme.

Din păcate, nu există un plan sau o schemă unică pentru rezolvarea și determinarea valorii necunoscute a logaritmului, dar anumite reguli pot fi aplicate fiecărei inegalități matematice sau ecuații logaritmice. În primul rând, ar trebui să aflați dacă expresia poate fi simplificată sau duce la aspectul general. Puteți simplifica expresiile logaritmice lungi dacă le folosiți corect proprietățile. Să-i cunoaștem repede.

Când rezolvăm ecuații logaritmice, trebuie să stabilim ce tip de logaritm avem: un exemplu de expresie poate conține un logaritm natural sau unul zecimal.

Iată exemple ln100, ln1026. Soluția lor se rezumă la faptul că trebuie să determine puterea la care baza 10 va fi egală cu 100, respectiv 1026. Pentru solutii logaritmi naturali trebuie să aplicați identități logaritmice sau proprietățile acestora. Să ne uităm la exemple de rezolvare a problemelor logaritmice de diferite tipuri.

Cum se utilizează formulele logaritmice: cu exemple și soluții

Deci, să ne uităm la exemple de utilizare a teoremelor de bază despre logaritmi.

  1. Proprietatea logaritmului unui produs poate fi utilizată în sarcini în care este necesară extinderea mare importanță numerele b în factori mai simpli. De exemplu, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Răspunsul este 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - după cum puteți vedea, folosind a patra proprietate a puterii logaritmului, am reușit să rezolvăm o expresie aparent complexă și de nerezolvat. Trebuie doar să factorizați baza și apoi să scoateți valorile exponentului din semnul logaritmului.

Teme de la examenul de stat unificat

Logaritmii se găsesc adesea la examenele de admitere, în special multe probleme logaritmice în examenul de stat unificat ( Examen de stat pentru toți absolvenții școlii). De obicei, aceste sarcini sunt prezente nu numai în partea A (cea mai ușoară parte a testului a examenului), ci și în partea C (cele mai complexe și mai voluminoase sarcini). Examenul necesită cunoașterea exactă și perfectă a subiectului „Logaritmi naturali”.

Exemple și soluții la probleme sunt preluate din versiunile oficiale ale examenului de stat unificat. Să vedem cum se rezolvă astfel de sarcini.

Dat log 2 (2x-1) = 4. Rezolvare:
să rescriem expresia, simplificând-o puțin log 2 (2x-1) = 2 2, prin definiția logaritmului obținem că 2x-1 = 2 4, deci 2x = 17; x = 8,5.

  • Cel mai bine este să reduceți toți logaritmii la aceeași bază, astfel încât soluția să nu fie greoaie și confuză.
  • Toate expresiile de sub semnul logaritmului sunt indicate ca pozitive, prin urmare, atunci când exponentul unei expresii care se află sub semnul logaritmului și ca bază a acesteia este scos ca multiplicator, expresia rămasă sub logaritm trebuie să fie pozitivă.

Ecuații logaritmice. Continuăm să luăm în considerare problemele din partea B a examenului unificat de stat la matematică. Am examinat deja soluțiile unor ecuații din articolele „”, „”. În acest articol ne vom uita la ecuațiile logaritmice. Voi spune imediat că nu vor exista transformări complexe la rezolvarea unor astfel de ecuații la examenul de stat unificat. Sunt simple.

Este suficient să cunoaștem și să înțelegem identitatea logaritmică de bază, să cunoaștem proprietățile logaritmului. Vă rugăm să rețineți că, după ce o rezolvați, TREBUIE să faceți o verificare - înlocuiți valoarea rezultată în ecuația originală și calculați, în final ar trebui să obțineți egalitatea corectă.

Definiție:

Logaritmul unui număr la baza b este exponentul.la care trebuie ridicat b pentru a obține a.


De exemplu:

Log 3 9 = 2, deoarece 3 2 = 9

Proprietățile logaritmilor:

Cazuri speciale de logaritmi:

Să rezolvăm problemele. În primul exemplu vom face o verificare. În viitor, verificați singur.

Aflați rădăcina ecuației: log 3 (4–x) = 4

Deoarece log b a = x b x = a, atunci

3 4 = 4 – x

x = 4 – 81

x = – 77

Examinare:

log 3 (4–(–77)) = 4

log 3 81 = 4

3 4 = 81 Corect.

Răspuns: – 77

Decide pentru tine:

Aflați rădăcina ecuației: log 2 (4 – x) = 7

Găsiți rădăcina ecuației log 5(4 + x) = 2

Folosim identitatea logaritmică de bază.

Deoarece log a b = x b x = a, atunci

5 2 = 4 + x

x =5 2 – 4

x = 21

Examinare:

log 5 (4 + 21) = 2

log 5 25 = 2

5 2 = 25 Corect.

Raspuns: 21

Aflați rădăcina ecuației log 3 (14 – x) = log 3 5.

Are loc următoarea proprietate, sensul ei este următorul: dacă în stânga și dreapta ecuației avem logaritmi cu aceeași bază, atunci putem echivala expresiile sub semnele logaritmilor.

14 – x = 5

x=9

Faceți o verificare.

Raspuns: 9

Decide pentru tine:

Aflați rădăcina ecuației log 5 (5 – x) = log 5 3.

Aflați rădăcina ecuației: log 4 (x + 3) = log 4 (4x – 15).

Dacă log c a = log c b, atunci a = b

x + 3 = 4x – 15

3x = 18

x=6

Faceți o verificare.

Raspuns: 6

Aflați rădăcina ecuației log 1/8 (13 – x) = – 2.

(1/8) –2 = 13 – x

8 2 = 13 – x

x = 13 – 64

x = – 51

Faceți o verificare.

Un mic plus - proprietatea este folosită aici

grade ().

Răspuns: – 51

Decide pentru tine:

Aflați rădăcina ecuației: log 1/7 (7 – x) = – 2

Aflați rădăcina ecuației log 2 (4 – x) = 2 log 2 5.

Să transformăm partea dreaptă. Să folosim proprietatea:

log a b m = m∙log a b

log 2 (4 – x) = log 2 5 2

Dacă log c a = log c b, atunci a = b

4 – x = 5 2

4 – x = 25

x = – 21

Faceți o verificare.

Răspuns: - 21

Decide pentru tine:

Aflați rădăcina ecuației: log 5 (5 – x) = 2 log 5 3

Rezolvați ecuația log 5 (x 2 + 4x) = log 5 (x 2 + 11)

Dacă log c a = log c b, atunci a = b

x 2 + 4x = x 2 + 11

4x = 11

x = 2,75

Faceți o verificare.

Răspuns: 2,75

Decide pentru tine:

Aflați rădăcina ecuației log 5 (x 2 + x) = log 5 (x 2 + 10).

Rezolvați ecuația log 2 (2 – x) = log 2 (2 – 3x) +1.

Este necesar să se obțină o expresie a formei din partea dreaptă a ecuației:

jurnalul 2 (......)

Reprezentăm 1 ca logaritm de bază 2:

1 = log 2 2

log c (ab) = log c a + log c b

log 2 (2 – x) = log 2 (2 – 3x) + log 2 2

Primim:

log 2 (2 – x) = log 2 2 (2 – 3x)

Dacă log c a = log c b, atunci a = b, atunci

2 – x = 4 – 6x

5x = 2

x = 0,4

Faceți o verificare.

Răspuns: 0,4

Decide pentru tine: În continuare trebuie să rezolvați ecuația pătratică. Apropo,

rădăcinile sunt 6 și – 4.

Rădăcină „–4" nu este o soluție, deoarece baza logaritmului trebuie să fie mai mare decât zero și cu " 4" este egal cu " 5". Soluția este rădăcina 6.Faceți o verificare.

Raspuns: 6.

R mananca pe cont propriu:

Rezolvați ecuația log x –5 49 = 2. Dacă ecuația are mai multe rădăcini, răspundeți cu cea mai mică.

După cum ați văzut, fără transformări complicate cu ecuații logaritmiceNu. Este suficient să cunoști proprietățile logaritmului și să le poți aplica. ÎN Sarcini de examinare unificată de stat La conversia expresiilor logaritmice, sunt efectuate conversii mai serioase și sunt necesare abilități de soluții mai avansate. Vom privi astfel de exemple, nu le ratați!Vă doresc succes!!!

Cu stimă, Alexander Krutitskikh.

P.S: V-as fi recunoscator daca mi-ati spune despre site pe retelele de socializare.

proprietăți principale.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

temeiuri identice

Log6 4 + log6 9.

Acum să complicăm puțin sarcina.

Exemple de rezolvare a logaritmilor

Ce se întâmplă dacă baza sau argumentul unui logaritm este o putere? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Desigur, toate aceste reguli au sens dacă se respectă ODZ a logaritmului: a > 0, a ≠ 1, x >

Sarcină. Găsiți sensul expresiei:

Trecerea la o nouă fundație

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

Sarcină. Găsiți sensul expresiei:

Vezi si:


Proprietățile de bază ale logaritmului

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Exponentul este 2,718281828... Pentru a vă aminti exponentul, puteți studia regula: exponentul este egal cu 2,7 și de două ori anul nașterii lui Leo Nikolaevici Tolstoi.

Proprietățile de bază ale logaritmilor

Cunoscând această regulă, veți ști atât valoarea exactă a exponentului, cât și data nașterii lui Lev Tolstoi.


Exemple pentru logaritmi

Expresii logaritmice

Exemplul 1.
A). x=10ac^2 (a>0,c>0).

Folosind proprietățile 3.5 calculăm

2.

3.

4. Unde .



Exemplul 2. Găsiți x dacă


Exemplul 3. Să fie dată valoarea logaritmilor

Calculați log(x) dacă




Proprietățile de bază ale logaritmilor

Logaritmii, ca orice numere, pot fi adunați, scăzuți și transformați în orice fel. Dar, deoarece logaritmii nu sunt exact numere obișnuite, există reguli aici, care sunt numite proprietăți principale.

Cu siguranță trebuie să cunoașteți aceste reguli - fără ele nu poate fi rezolvată nicio problemă serioasă. problemă logaritmică. În plus, sunt foarte puține dintre ele - puteți învăța totul într-o singură zi. Asadar, haideti sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceleași baze: logax și logay. Apoi pot fi adăugate și scăzute și:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este egală cu logaritmul coeficientului. Vă rugăm să rețineți: punctul cheie aici este temeiuri identice. Dacă motivele sunt diferite, aceste reguli nu funcționează!

Aceste formule vă vor ajuta să calculați o expresie logaritmică chiar și atunci când părțile sale individuale nu sunt luate în considerare (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

Deoarece logaritmii au aceleași baze, folosim formula sumei:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Sarcină. Aflați valoarea expresiei: log2 48 − log2 3.

Bazele sunt aceleași, folosim formula diferenței:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Sarcină. Aflați valoarea expresiei: log3 135 − log3 5.

Din nou bazele sunt aceleași, deci avem:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt calculate separat. Dar după transformări se obțin numere complet normale. Multe sunt construite pe acest fapt hârtii de test. Da, expresii asemănătoare testelor sunt oferite cu toată seriozitatea (uneori practic fără modificări) la examenul de stat unificat.

Extragerea exponentului din logaritm

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă ODZ al logaritmului: a > 0, a ≠ 1, x > 0. Și încă ceva: învață să aplici toate formulele nu numai de la stânga la dreapta, ci și invers. , adică Puteți introduce numerele înainte de semnul logaritmului în logaritmul însuși. Acesta este ceea ce se cere cel mai adesea.

Sarcină. Aflați valoarea expresiei: log7 496.

Să scăpăm de gradul din argument folosind prima formulă:
log7 496 = 6 log7 49 = 6 2 = 12

Sarcină. Găsiți sensul expresiei:

Rețineți că numitorul conține un logaritm, a cărui bază și argument sunt puteri exacte: 16 = 24; 49 = 72. Avem:

Cred că ultimul exemplu necesită unele clarificări. Unde s-au dus logaritmii? Pana chiar ultimul moment lucrăm doar cu numitorul.

Formule logaritmice. Exemple de logaritmi soluții.

Am prezentat baza și argumentul logaritmului aflat acolo sub formă de puteri și am scos exponenții - am obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul conțin același număr: log2 7. Deoarece log2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne în numitor. Conform regulilor aritmeticii, cele patru pot fi transferate la numărător, ceea ce s-a făcut. Rezultatul a fost răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă motivele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă fundație vin în ajutor. Să le formulăm sub forma unei teoreme:

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

În special, dacă setăm c = x, obținem:

Din a doua formulă rezultă că baza și argumentul logaritmului pot fi schimbate, dar în acest caz întreaga expresie este „întoarsă”, adică. logaritmul apare la numitor.

Aceste formule se găsesc rar în expresiile numerice obișnuite. Este posibil să se evalueze cât de convenabile sunt acestea numai atunci când se rezolvă ecuații și inegalități logaritmice.

Cu toate acestea, există probleme care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să ne uităm la câteva dintre acestea:

Sarcină. Aflați valoarea expresiei: log5 16 log2 25.

Rețineți că argumentele ambilor logaritmi conțin puteri exacte. Să scoatem indicatorii: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Acum să „inversăm” al doilea logaritm:

Deoarece produsul nu se schimbă la rearanjarea factorilor, am înmulțit cu calm patru și doi, apoi ne-am ocupat de logaritmi.

Sarcină. Aflați valoarea expresiei: log9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să notăm asta și să scăpăm de indicatorii:

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată. În acest caz, următoarele formule ne vor ajuta:

În primul caz, numărul n devine exponent în argument. Numărul n poate fi absolut orice, deoarece este doar o valoare logaritmică.

A doua formulă este de fapt o definiție parafrazată. Așa se numește: .

De fapt, ce se întâmplă dacă numărul b este ridicat la o astfel de putere încât numărul b la această putere dă numărul a? Așa este: rezultatul este același număr a. Citiți din nou acest paragraf cu atenție - mulți oameni rămân blocați în el.

Asemenea formulelor pentru trecerea la o nouă bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

Sarcină. Găsiți sensul expresiei:

Rețineți că log25 64 = log5 8 - pur și simplu a luat pătratul de la baza și argumentul logaritmului. Ținând cont de regulile de înmulțire a puterilor cu aceeași bază, obținem:

Dacă cineva nu știe, aceasta a fost o sarcină reală de la examenul de stat unificat :)

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care cu greu pot fi numite proprietăți - mai degrabă, sunt consecințe ale definiției logaritmului. Apar constant în probleme și, în mod surprinzător, creează probleme chiar și pentru elevii „avansați”.

  1. logaa = 1 este. Amintiți-vă odată pentru totdeauna: logaritmul oricărei baze a a acelei baze în sine este egal cu unu.
  2. loga 1 = 0 este. Baza a poate fi orice, dar dacă argumentul conține unul, logaritmul este egal cu zero! Deoarece a0 = 1 este o consecință directă a definiției.

Sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați fișa cheat la începutul lecției, imprimați-o și rezolvați problemele.

Vezi si:

Logaritmul lui b la baza a denotă expresia. A calcula logaritmul înseamnă a găsi o putere x () la care egalitatea este satisfăcută

Proprietățile de bază ale logaritmului

Este necesar să se cunoască proprietățile de mai sus, deoarece aproape toate problemele și exemplele legate de logaritmi sunt rezolvate pe baza lor. Restul proprietăților exotice pot fi derivate prin manipulări matematice cu aceste formule

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Când calculați formula pentru suma și diferența de logaritmi (3.4) întâlniți destul de des. Restul sunt oarecum complexe, dar într-o serie de sarcini sunt indispensabile pentru simplificarea expresiilor complexe și calcularea valorilor acestora.

Cazuri comune de logaritmi

Unii dintre logaritmii obișnuiți sunt cei în care baza este chiar zece, exponențială sau două.
Logaritmul la baza zece este de obicei numit logaritm zecimal și este pur și simplu notat cu lg(x).

Din înregistrare reiese clar că elementele de bază nu sunt scrise în înregistrare. De exemplu

Un logaritm natural este un logaritm a cărui bază este un exponent (notat cu ln(x)).

Exponentul este 2,718281828... Pentru a vă aminti exponentul, puteți studia regula: exponentul este egal cu 2,7 și de două ori anul nașterii lui Leo Nikolaevici Tolstoi. Cunoscând această regulă, veți ști atât valoarea exactă a exponentului, cât și data nașterii lui Lev Tolstoi.

Și un alt logaritm important pentru baza doi este notat cu

Derivata logaritmului unei funcții este egală cu una împărțită la variabilă

Logaritmul integral sau antiderivat este determinat de relație

Materialul dat este suficient pentru a rezolva o clasă largă de probleme legate de logaritmi și logaritmi. Pentru a vă ajuta să înțelegeți materialul, voi da doar câteva exemple comune din programa școlară și universități.

Exemple pentru logaritmi

Expresii logaritmice

Exemplul 1.
A). x=10ac^2 (a>0,c>0).

Folosind proprietățile 3.5 calculăm

2.
Prin proprietatea diferenței logaritmilor avem

3.
Folosind proprietățile 3.5 găsim

4. Unde .

O expresie aparent complexă este simplificată pentru a se forma folosind o serie de reguli

Găsirea valorilor logaritmului

Exemplul 2. Găsiți x dacă

Soluţie. Pentru calcul, aplicăm la ultimul termen 5 și 13 proprietăți

O consemnăm și plângem

Deoarece bazele sunt egale, echivalăm expresiile

Logaritmi. Primul nivel.

Să fie dată valoarea logaritmilor

Calculați log(x) dacă

Soluție: Să luăm un logaritm al variabilei pentru a scrie logaritmul prin suma termenilor săi


Acesta este doar începutul cunoașterii noastre cu logaritmii și proprietățile lor. Exersați calculele, îmbogățiți-vă abilitățile practice - veți avea nevoie în curând de cunoștințele acumulate pentru a rezolva ecuații logaritmice. După ce am studiat metodele de bază pentru rezolvarea unor astfel de ecuații, vă vom extinde cunoștințele la un alt subiect la fel de important - inegalitățile logaritmice...

Proprietățile de bază ale logaritmilor

Logaritmii, ca orice numere, pot fi adunați, scăzuți și transformați în orice fel. Dar, deoarece logaritmii nu sunt exact numere obișnuite, există reguli aici, care sunt numite proprietăți principale.

Cu siguranță trebuie să cunoașteți aceste reguli - fără ele, nici o problemă logaritmică serioasă nu poate fi rezolvată. În plus, sunt foarte puține dintre ele - puteți învăța totul într-o singură zi. Asadar, haideti sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceleași baze: logax și logay. Apoi pot fi adăugate și scăzute și:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este egală cu logaritmul coeficientului. Vă rugăm să rețineți: punctul cheie aici este temeiuri identice. Dacă motivele sunt diferite, aceste reguli nu funcționează!

Aceste formule vă vor ajuta să calculați o expresie logaritmică chiar și atunci când părțile sale individuale nu sunt luate în considerare (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

Sarcină. Aflați valoarea expresiei: log6 4 + log6 9.

Deoarece logaritmii au aceleași baze, folosim formula sumei:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Sarcină. Aflați valoarea expresiei: log2 48 − log2 3.

Bazele sunt aceleași, folosim formula diferenței:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Sarcină. Aflați valoarea expresiei: log3 135 − log3 5.

Din nou bazele sunt aceleași, deci avem:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt calculate separat. Dar după transformări se obțin numere complet normale. Multe teste se bazează pe acest fapt. Da, expresii asemănătoare testelor sunt oferite cu toată seriozitatea (uneori practic fără modificări) la examenul de stat unificat.

Extragerea exponentului din logaritm

Acum să complicăm puțin sarcina. Ce se întâmplă dacă baza sau argumentul unui logaritm este o putere? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă ODZ al logaritmului: a > 0, a ≠ 1, x > 0. Și încă ceva: învață să aplici toate formulele nu numai de la stânga la dreapta, ci și invers. , adică Puteți introduce numerele înainte de semnul logaritmului în logaritmul însuși.

Cum se rezolvă logaritmii

Acesta este ceea ce se cere cel mai adesea.

Sarcină. Aflați valoarea expresiei: log7 496.

Să scăpăm de gradul din argument folosind prima formulă:
log7 496 = 6 log7 49 = 6 2 = 12

Sarcină. Găsiți sensul expresiei:

Rețineți că numitorul conține un logaritm, a cărui bază și argument sunt puteri exacte: 16 = 24; 49 = 72. Avem:

Cred că ultimul exemplu necesită unele clarificări. Unde s-au dus logaritmii? Până în ultimul moment lucrăm doar cu numitorul. Am prezentat baza și argumentul logaritmului aflat acolo sub formă de puteri și am scos exponenții - am obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul conțin același număr: log2 7. Deoarece log2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne în numitor. Conform regulilor aritmeticii, cele patru pot fi transferate la numărător, ceea ce s-a făcut. Rezultatul a fost răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă motivele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă fundație vin în ajutor. Să le formulăm sub forma unei teoreme:

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

În special, dacă setăm c = x, obținem:

Din a doua formulă rezultă că baza și argumentul logaritmului pot fi schimbate, dar în acest caz întreaga expresie este „întoarsă”, adică. logaritmul apare la numitor.

Aceste formule se găsesc rar în expresiile numerice obișnuite. Este posibil să se evalueze cât de convenabile sunt acestea numai atunci când se rezolvă ecuații și inegalități logaritmice.

Cu toate acestea, există probleme care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să ne uităm la câteva dintre acestea:

Sarcină. Aflați valoarea expresiei: log5 16 log2 25.

Rețineți că argumentele ambilor logaritmi conțin puteri exacte. Să scoatem indicatorii: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Acum să „inversăm” al doilea logaritm:

Deoarece produsul nu se schimbă la rearanjarea factorilor, am înmulțit cu calm patru și doi, apoi ne-am ocupat de logaritmi.

Sarcină. Aflați valoarea expresiei: log9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să notăm asta și să scăpăm de indicatorii:

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată. În acest caz, următoarele formule ne vor ajuta:

În primul caz, numărul n devine exponent în argument. Numărul n poate fi absolut orice, deoarece este doar o valoare logaritmică.

A doua formulă este de fapt o definiție parafrazată. Așa se numește: .

De fapt, ce se întâmplă dacă numărul b este ridicat la o astfel de putere încât numărul b la această putere dă numărul a? Așa este: rezultatul este același număr a. Citiți din nou acest paragraf cu atenție - mulți oameni rămân blocați în el.

Asemenea formulelor pentru trecerea la o nouă bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

Sarcină. Găsiți sensul expresiei:

Rețineți că log25 64 = log5 8 - pur și simplu a luat pătratul de la baza și argumentul logaritmului. Ținând cont de regulile de înmulțire a puterilor cu aceeași bază, obținem:

Dacă cineva nu știe, aceasta a fost o sarcină reală de la examenul de stat unificat :)

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care cu greu pot fi numite proprietăți - mai degrabă, sunt consecințe ale definiției logaritmului. Apar constant în probleme și, în mod surprinzător, creează probleme chiar și pentru elevii „avansați”.

  1. logaa = 1 este. Amintiți-vă odată pentru totdeauna: logaritmul oricărei baze a a acelei baze în sine este egal cu unu.
  2. loga 1 = 0 este. Baza a poate fi orice, dar dacă argumentul conține unul, logaritmul este egal cu zero! Deoarece a0 = 1 este o consecință directă a definiției.

Sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați fișa cheat la începutul lecției, imprimați-o și rezolvați problemele.



Articole similare: