Înmulțirea fracțiilor ordinare. Operații cu fracții

) și numitor cu numitor (se obține numitorul produsului).

Formula pentru înmulțirea fracțiilor:

De exemplu:

Înainte de a începe înmulțirea numărătorilor și numitorilor, trebuie să verificați dacă fracția poate fi redusă. Dacă puteți reduce fracția, vă va fi mai ușor să faceți calcule suplimentare.

Împărțirea unei fracții comune la o fracție.

Împărțirea fracțiilor care implică numere naturale.

Nu este atât de înfricoșător pe cât pare. Ca și în cazul adunării, convertim întregul într-o fracție cu unu la numitor. De exemplu:

Înmulțirea fracțiilor mixte.

Reguli pentru înmulțirea fracțiilor (mixte):

  • converti fracțiile mixte în fracții improprii;
  • înmulțirea numărătorilor și numitorilor fracțiilor;
  • reduceți fracția;
  • Dacă obțineți o fracție improprie, atunci convertim fracția improprie într-o fracție mixtă.

Notă! Pentru a înmulți o fracție mixtă cu o altă fracție mixtă, mai întâi trebuie să le convertiți în forma de fracții improprii și apoi să înmulțiți conform regulii înmulțirii fracții obișnuite.

A doua modalitate de a înmulți o fracție cu un număr natural.

Poate fi mai convenabil să folosiți a doua metodă de înmulțire a unei fracții comune cu un număr.

Notă! Pentru a înmulți o fracție cu un număr natural, trebuie să împărțiți numitorul fracției la acest număr și să lăsați numărătorul neschimbat.

Din exemplul dat mai sus, este clar că această opțiune este mai convenabilă de utilizat atunci când numitorul unei fracții este împărțit fără rest la un număr natural.

Fracții cu mai multe etaje.

În liceu, se întâlnesc adesea fracții cu trei etaje (sau mai multe). Exemplu:

Pentru a aduce o astfel de fracție la forma ei obișnuită, utilizați împărțirea prin 2 puncte:

Notă! La împărțirea fracțiilor, ordinea împărțirii este foarte importantă. Fii atent, aici este ușor să te încurci.

Notă, De exemplu:

Când împărțiți unul la orice fracție, rezultatul va fi aceeași fracție, doar inversată:

Sfaturi practice pentru înmulțirea și împărțirea fracțiilor:

1. Cel mai important lucru atunci când lucrați cu expresii fracționale este acuratețea și atenția. Faceți toate calculele cu atenție și precizie, concentrat și clar. Este mai bine să scrieți câteva rânduri în plus în ciornă decât să vă pierdeți în calcule mentale.

2. În sarcini cu tipuri diferite fracții - mergi la forma fracțiilor obișnuite.

3. Reducem toate fracțiile până când nu se mai poate reduce.

4. Transformăm expresii fracționale cu mai multe niveluri în expresii obișnuite folosind împărțirea prin 2 puncte.

5. Împărțiți o unitate la o fracție în cap, pur și simplu răsturnând fracția.

Pentru a înmulți corect o fracție cu o fracție sau o fracție cu un număr, trebuie să știi reguli simple. Vom analiza acum aceste reguli în detaliu.

Înmulțirea unei fracții comune cu o fracție.

Pentru a înmulți o fracție cu o fracție, trebuie să calculați produsul numărătorilor și produsul numitorilor acestor fracții.

\(\bf \frac(a)(b) \times \frac(c)(d) = \frac(a \times c)(b \times d)\\\)

Să ne uităm la un exemplu:
Înmulțim numărătorul primei fracții cu numărătorul celei de-a doua fracții și, de asemenea, înmulțim numitorul primei fracții cu numitorul celei de-a doua fracții.

\(\frac(6)(7) \times \frac(2)(3) = \frac(6 \times 2)(7 \times 3) = \frac(12)(21) = \frac(4 \ ori 3)(7 \ori 3) = \frac(4)(7)\\\)

Fracția \(\frac(12)(21) = \frac(4 \times 3)(7 \times 3) = \frac(4)(7)\\\) a fost redusă cu 3.

Înmulțirea unei fracții cu un număr.

În primul rând, să ne amintim regula, orice număr poate fi reprezentat ca o fracție \(\bf n = \frac(n)(1)\) .

Să folosim această regulă atunci când înmulțim.

\(5 \times \frac(4)(7) = \frac(5)(1) \times \frac(4)(7) = \frac(5 \times 4)(1 \times 7) = \frac (20)(7) = 2\frac(6)(7)\\\)

Fracție improprie \(\frac(20)(7) = \frac(14 + 6)(7) = \frac(14)(7) + \frac(6)(7) = 2 + \frac(6)( 7)= 2\frac(6)(7)\\\) convertit într-o fracție mixtă.

Cu alte cuvinte, Când înmulțim un număr cu o fracție, înmulțim numărul cu numărător și lăsăm numitorul neschimbat. Exemplu:

\(\frac(2)(5) \times 3 = \frac(2 \times 3)(5) = \frac(6)(5) = 1\frac(1)(5)\\\\\) \(\bf \frac(a)(b) \times c = \frac(a \times c)(b)\\\)

Înmulțirea fracțiilor mixte.

Pentru a înmulți fracțiile mixte, trebuie mai întâi să reprezentați fiecare fracție mixtă ca o fracție improprie și apoi să utilizați regula înmulțirii. Înmulțim numărătorul cu numărătorul și înmulțim numitorul cu numitorul.

Exemplu:
\(2\frac(1)(4) \times 3\frac(5)(6) = \frac(9)(4) \times \frac(23)(6) = \frac(9 \times 23) (4 \times 6) = \frac(3 \times \color(red) (3) \times 23)(4 \times 2 \times \color(red) (3)) = \frac(69)(8) = 8\frac(5)(8)\\\)

Înmulțirea fracțiilor și numerelor reciproce.

Fracția \(\bf \frac(a)(b)\) este inversul fracției \(\bf \frac(b)(a)\), cu condiția a≠0,b≠0.
Fracțiile \(\bf \frac(a)(b)\) și \(\bf \frac(b)(a)\) se numesc fracții reciproce. Produsul fracțiilor reciproce este egal cu 1.
\(\bf \frac(a)(b) \times \frac(b)(a) = 1 \\\)

Exemplu:
\(\frac(5)(9) \times \frac(9)(5) = \frac(45)(45) = 1\\\)

Întrebări înrudite:
Cum se înmulțește o fracție cu o fracție?
Răspuns: Produsul fracțiilor obișnuite este înmulțirea unui numărător cu un numărător, a unui numitor cu un numitor. Pentru a primi lucrarea fractii mixte trebuie să le convertiți în fracții improprii și să le înmulțiți conform regulilor.

Cum se înmulțesc fracțiile cu numitori diferiti?
Răspuns: nu contează dacă fracțiile au numitori aceiași sau diferiți, înmulțirea are loc conform regulii de a găsi produsul unui numărător cu numărător, un numitor cu numitor.

Cum se înmulțesc fracțiile mixte?
Răspuns: în primul rând, trebuie să convertiți fracția mixtă într-o fracție necorespunzătoare și apoi să găsiți produsul folosind regulile de înmulțire.

Cum se înmulțește un număr cu o fracție?
Răspuns: înmulțim numărul cu numărătorul, dar numitorul lăsăm același.

Exemplul #1:
Calculați produsul: a) \(\frac(8)(9) \times \frac(7)(11)\) b) \(\frac(2)(15) \times \frac(10)(13) \)

Soluţie:
a) \(\frac(8)(9) \times \frac(7)(11) = \frac(8 \times 7)(9 \times 11) = \frac(56)(99)\\\\ \)
b) \(\frac(2)(15) \times \frac(10)(13) = \frac(2 \times 10)(15 \times 13) = \frac(2 \times 2 \times \color( roșu) (5))(3 \times \color(red) (5) \times 13) = \frac(4)(39)\)

Exemplul #2:
Calculați produsele unui număr și ale unei fracții: a) \(3 \times \frac(17)(23)\) b) \(\frac(2)(3) \times 11\)

Soluţie:
a) \(3 \times \frac(17)(23) = \frac(3)(1) \times \frac(17)(23) = \frac(3 \times 17)(1 \times 23) = \frac(51)(23) = 2\frac(5)(23)\\\\\)
b) \(\frac(2)(3) \times 11 = \frac(2)(3) \times \frac(11)(1) = \frac(2 \times 11)(3 \times 1) = \frac(22)(3) = 7\frac(1)(3)\)

Exemplul #3:
Scrieți reciproca fracției \(\frac(1)(3)\)?
Răspuns: \(\frac(3)(1) = 3\)

Exemplul #4:
Calculați produsul a două fracții reciproc inverse: a) \(\frac(104)(215) \times \frac(215)(104)\)

Soluţie:
a) \(\frac(104)(215) \times \frac(215)(104) = 1\)

Exemplul #5:
Fracțiile reciproce pot fi:
a) concomitent cu fracțiile proprii;
b) simultan fracții improprii;
c) simultan numere naturale?

Soluţie:
a) pentru a răspunde la prima întrebare, să dăm un exemplu. Fracția \(\frac(2)(3)\) este proprie, fracția sa inversă va fi egală cu \(\frac(3)(2)\) – fracție improprie. Raspuns: nu.

b) în aproape toate enumerările de fracții această condiție nu este îndeplinită, dar există unele numere care îndeplinesc condiția de a fi simultan o fracție improprie. De exemplu, fracția improprie este \(\frac(3)(3)\), fracția sa inversă este egală cu \(\frac(3)(3)\). Obținem două fracții improprii. Răspuns: nu întotdeauna în anumite condiții când numărătorul și numitorul sunt egali.

c) numerele naturale sunt numere pe care le folosim atunci când numărăm, de exemplu, 1, 2, 3, …. Dacă luăm numărul \(3 = \frac(3)(1)\), atunci fracția sa inversă va fi \(\frac(1)(3)\). Fracția \(\frac(1)(3)\) nu este numar natural. Dacă parcurgem toate numerele, reciproca numărului este întotdeauna o fracție, cu excepția lui 1. Dacă luăm numărul 1, atunci fracția sa reciprocă va fi \(\frac(1)(1) = \frac(1). )(1) = 1\). Numărul 1 este un număr natural. Răspuns: pot fi simultan numere naturale doar într-un singur caz, dacă acesta este numărul 1.

Exemplul #6:
Faceți produsul fracțiilor mixte: a) \(4 \times 2\frac(4)(5)\) b) \(1\frac(1)(4) \times 3\frac(2)(7)\ )

Soluţie:
a) \(4 \times 2\frac(4)(5) = \frac(4)(1) \times \frac(14)(5) = \frac(56)(5) = 11\frac(1 )(5)\\\\ \)
b) \(1\frac(1)(4) \times 3\frac(2)(7) = \frac(5)(4) \times \frac(23)(7) = \frac(115)( 28) = 4\frac(3)(7)\)

Exemplul #7:
Două reciproce pot fi numere mixte în același timp?

Să ne uităm la un exemplu. Să luăm o fracție mixtă \(1\frac(1)(2)\), găsim fracția ei inversă, pentru a face acest lucru o transformăm într-o fracție improprie \(1\frac(1)(2) = \frac(3) )(2) \) . Fracția sa inversă va fi egală cu \(\frac(2)(3)\) . Fracția \(\frac(2)(3)\) este o fracție proprie. Răspuns: Două fracții care sunt reciproc inverse nu pot fi numere mixte în același timp.

Numerele fracționale obișnuite întâlnesc mai întâi școlari în clasa a V-a și îi însoțesc pe tot parcursul vieții, deoarece în viața de zi cu zi este adesea necesar să se ia în considerare sau să se folosească un obiect nu ca un întreg, ci în bucăți separate. Începeți să studiați acest subiect - acțiuni. Acțiunile sunt părți egale, în care se împarte acest sau acel obiect. La urma urmei, nu este întotdeauna posibil să se țină seama, de exemplu, de lungimea sau prețul unui produs ca număr întreg; Format din verbul „a împărți” - a împărți în părți și având rădăcini arabe, cuvântul „fracție” însuși a apărut în limba rusă în secolul al VIII-lea.

Expresiile fracționale au fost mult timp considerate cea mai dificilă ramură a matematicii. În secolul al XVII-lea, când au apărut primele manuale de matematică, ele erau numite „numere sparte”, ceea ce era foarte greu de înțeles de către oameni.

Aspect modern resturile fracționale simple, ale căror părți sunt separate printr-o linie orizontală, au fost promovate pentru prima dată de Fibonacci - Leonardo din Pisa. Lucrările sale sunt datate din 1202. Dar scopul acestui articol este de a explica simplu și clar cititorului cum se înmulțesc fracțiile mixte cu diferiți numitori.

Înmulțirea fracțiilor cu numitori diferiți

Inițial merită determinat tipuri de fracții:

  • corect;
  • incorect;
  • amestecat.

Apoi, trebuie să vă amintiți cu ce sunt înmulțite numerele fracționale aceiași numitori. Însăși regula acestui proces nu este dificil de formulat independent: rezultatul înmulțirii fracțiilor simple cu numitori identici este o expresie fracțională, al cărei numărător este produsul numărătorilor, iar numitorul este produsul numitorilor acestor fracții. . Adică, de fapt, noul numitor este pătratul unuia dintre cele existente inițial.

La înmulțire fracții simple cu numitori diferiți pentru doi sau mai mulți factori regula nu se schimbă:

A/b * c/d = a*c/ b*d.

Singura diferență este că numărul format sub linia fracțională va fi un produs de numere diferite și, desigur, nu poate fi numit pătratul unei expresii numerice.

Merită să luați în considerare înmulțirea fracțiilor cu numitori diferiți folosind exemple:

  • 8/ 9 * 6/ 7 = 8*6 / 9*7 = 48/ 63 = 16/2 1 ;
  • 4/ 6 * 3/ 7 = 2/ 3 * 3/7 <> 2*3 / 3*7 = 6/ 21 .

Exemplele folosesc metode pentru reducerea expresiilor fracționale. Puteți reduce numai numerele numărătorului cu numerele numitorului factorii adiacenți deasupra sau sub linia fracției nu pot fi reduse.

Alături de fracțiile simple, există și conceptul de fracții mixte. Un număr mixt este format dintr-un număr întreg și o parte fracțională, adică este suma acestor numere:

1 4/ 11 =1 + 4/ 11.

Cum funcționează înmulțirea?

Sunt oferite mai multe exemple pentru a fi luate în considerare.

2 1/ 2 * 7 3/ 5 = 2 + 1/ 2 * 7 + 3/ 5 = 2*7 + 2* 3/ 5 + 1/ 2 * 7 + 1/ 2 * 3/ 5 = 14 + 6/5 + 7/ 2 + 3/ 10 = 14 + 12/ 10 + 35/ 10 + 3/ 10 = 14 + 50/ 10 = 14 + 5=19.

Exemplul folosește înmulțirea unui număr cu parte fracțională obișnuită, regula pentru această acțiune poate fi scrisă astfel:

A* b/c = a*b/c.

De fapt, un astfel de produs este suma resturilor fracționale identice, iar numărul de termeni indică acest număr natural. Caz special:

4 * 12/ 15 = 12/ 15 + 12/ 15 + 12/ 15 + 12/ 15 = 48/ 15 = 3 1/ 5.

Există o altă soluție pentru înmulțirea unui număr cu un rest fracționar. Trebuie doar să împărțiți numitorul la acest număr:

d* e/f = e/f:d.

Această tehnică este utilă atunci când numitorul este împărțit la un număr natural fără rest sau, după cum se spune, la un număr întreg.

Convertiți numerele mixte în fracții improprii și obțineți produsul în modul descris anterior:

1 2/ 3 * 4 1/ 5 = 5/ 3 * 21/ 5 = 5*21 / 3*5 =7.

Acest exemplu implică o modalitate de a reprezenta o fracție mixtă ca o fracție improprie, poate fi reprezentată și ca formula generala:

A bc = a*b+ c/c, unde numitorul noii fracții se formează prin înmulțirea întregii părți cu numitorul și adăugarea acesteia cu numărătorul restului fracționar inițial, iar numitorul rămâne același.

Acest proces funcționează și în direcția opusă. Pentru a separa întreaga parte și restul fracționar, trebuie să împărțiți numărătorul unei fracții improprie la numitorul ei folosind un „colț”.

Înmulțirea fracțiilor improprii produs într-un mod general acceptat. Când scrieți sub o singură linie de fracție, trebuie să reduceți fracțiile după cum este necesar pentru a reduce numerele folosind această metodă și pentru a facilita calcularea rezultatului.

Există mulți ajutoare pe Internet pentru a rezolva chiar și probleme matematice complexe în diverse variante de programe. Un număr suficient de astfel de servicii oferă asistență în numărarea înmulțirii fracțiilor cu numere diferiteîn numitori - așa-numitele calculatoare online pentru calcularea fracțiilor. Ei sunt capabili nu numai să înmulțească, ci și să efectueze toate celelalte operații aritmetice simple cu fracții obișnuite și numere mixte. Nu este dificil să lucrați cu acesta, completați câmpurile corespunzătoare de pe pagina site-ului, selectați semnul operației matematice și faceți clic pe „calculați”. Programul calculează automat.

Tema operațiilor aritmetice cu fracții este relevantă pe tot parcursul educației elevilor de gimnaziu și liceu. În liceu nu mai consideră cea mai simplă specie, dar expresii fracționale întregi, dar cunoașterea regulilor de transformare și calcule obținute mai devreme se aplică în forma sa originală. Cunoștințele de bază bine stăpânite oferă încredere deplină în decizie de succes cel mai sarcini complexe.

În concluzie, este logic să cităm cuvintele lui Lev Nikolaevici Tolstoi, care a scris: „Omul este o fracțiune. Nu stă în puterea unei persoane să-și mărească numărătorul – meritele – dar oricine își poate reduce numitorul – părerea sa despre sine, iar odată cu această scădere se apropie de perfecțiunea sa.

La cursurile de gimnaziu și liceu, elevii au abordat tema „Fracțiuni”. Cu toate acestea, acest concept este mult mai larg decât ceea ce este dat în procesul de învățare. Astăzi, conceptul de fracție este întâlnit destul de des și nu toată lumea poate calcula orice expresie, de exemplu, înmulțirea fracțiilor.

Ce este o fracție?

Din punct de vedere istoric, numerele fracționale au apărut din necesitatea de a măsura. După cum arată practica, există adesea exemple de determinare a lungimii unui segment și a volumului unui dreptunghi dreptunghiular.

Inițial, elevii sunt introduși în conceptul de acțiune. De exemplu, dacă împărțiți un pepene în 8 părți, atunci fiecare persoană va primi o opteme din pepene. Această parte din opt se numește cotă.

O cotă egală cu ½ din orice valoare se numește jumătate; ⅓ - a treia; ¼ - un sfert. Înregistrările de forma 5/8, 4/5, 2/4 se numesc fracții ordinare. O fracție comună este împărțită în numărător și numitor. Între ele se află bara de fracțiuni sau bara de fracțiuni. Linia fracțională poate fi trasată fie ca o linie orizontală, fie ca o linie oblică. În acest caz, denotă semnul diviziunii.

Numitorul reprezintă în câte părți egale este împărțită cantitatea sau obiectul; iar numărătorul este câte acțiuni identice sunt luate. Numătorul este scris deasupra liniei fracțiilor, numitorul este scris sub ea.

Cel mai convenabil este să afișați fracțiile obișnuite pe o rază de coordonate. Dacă un singur segment este împărțit în 4 părți egale, fiecare parte este desemnată printr-o literă latină, atunci rezultatul poate fi un ajutor vizual excelent. Deci, punctul A arată o cotă egală cu 1/4 din întregul segment de unitate, iar punctul B marchează 2/8 dintr-un segment dat.

Tipuri de fracții

Fracțiile pot fi numere ordinare, zecimale și mixte. În plus, fracțiile pot fi împărțite în adecvate și improprii. Această clasificare este mai potrivită pentru fracțiile obișnuite.

O fracție proprie este un număr al cărui numărător este mai mic decât numitorul său. În consecință, o fracție improprie este un număr al cărui numărător este mai mare decât numitorul său. Al doilea tip este de obicei scris ca un număr mixt. Această expresie constă dintr-un număr întreg și o parte fracțională. De exemplu, 1½. 1 este o parte întreagă, ½ este o parte fracțională. Cu toate acestea, dacă trebuie să efectuați unele manipulări cu expresia (împărțirea sau înmulțirea fracțiilor, reducerea sau conversia acestora), numărul mixt este convertit într-o fracție improprie.

O expresie fracțională corectă este întotdeauna mai mică decât unu, iar una incorectă este întotdeauna mai mare sau egală cu 1.

În ceea ce privește această expresie, înțelegem o înregistrare în care este reprezentat orice număr, al cărui numitor al expresiei fracționale poate fi exprimat în termeni de unul cu mai multe zerouri. Dacă fracția este corectă, atunci partea întreagă în notație zecimală va fi egală cu zero.

Pentru a scrie o fracție zecimală, trebuie mai întâi să scrieți întreaga parte, să o separați de fracție folosind o virgulă și apoi să scrieți expresia fracției. Trebuie reținut că după virgulă zecimală numărătorul trebuie să conțină același număr de caractere digitale ca și zerouri în numitor.

Exemplu. Exprimați fracția 7 21 / 1000 în notație zecimală.

Algoritm pentru conversia unei fracții improprie într-un număr mixt și invers

Este incorect să scrieți o fracție necorespunzătoare în răspunsul la o problemă, așa că trebuie convertită într-un număr mixt:

  • împărțiți numărătorul la numitorul existent;
  • V exemplu concret coeficient incomplet - întreg;
  • iar restul este numărătorul părții fracționale, numitorul rămânând neschimbat.

Exemplu. Transformă fracția improprie în număr mixt: 47 / 5.

Soluţie. 47: 5. Coeficientul parțial este 9, restul = 2. Deci, 47 / 5 = 9 2 / 5.

Uneori trebuie să reprezentați un număr mixt ca o fracție improprie. Apoi, trebuie să utilizați următorul algoritm:

  • partea întreagă se înmulțește cu numitorul expresiei fracționale;
  • produsul rezultat se adaugă la numărător;
  • rezultatul se scrie la numărător, numitorul rămâne neschimbat.

Exemplu. Prezentați numărul în formă mixtă ca o fracție improprie: 9 8 / 10.

Soluţie. 9 x 10 + 8 = 90 + 8 = 98 este numărătorul.

Răspuns: 98 / 10.

Înmulțirea fracțiilor

Pe fracții obișnuite pot fi efectuate diverse operații algebrice. Pentru a înmulți două numere, trebuie să înmulțiți numărătorul cu numărătorul și numitorul cu numitorul. În plus, înmulțirea fracțiilor cu numitori diferiți nu este diferită de înmulțirea fracțiilor cu aceiași numitori.

Se întâmplă că, după găsirea rezultatului, trebuie să reduceți fracția. Este imperativ să simplificați cât mai mult posibil expresia rezultată. Desigur, nu se poate spune că o fracție improprie dintr-un răspuns este o eroare, dar este și dificil să o numim răspuns corect.

Exemplu. Aflați produsul a două fracții ordinare: ½ și 20/18.

După cum se poate observa din exemplu, după găsirea produsului, se obține o notație fracțională reductibilă. Atât numărătorul, cât și numitorul în acest caz sunt împărțiți la 4, iar rezultatul este răspunsul 5 / 9.

Înmulțirea fracțiilor zecimale

Produsul fracțiilor zecimale este destul de diferit de produsul fracțiilor obișnuite în principiu. Deci, înmulțirea fracțiilor este după cum urmează:

  • două fracții zecimale trebuie scrise una sub cealaltă, astfel încât cifrele din dreapta să fie una sub cealaltă;
  • trebuie să înmulțiți numerele scrise, în ciuda virgulelor, adică ca numere naturale;
  • numărați numărul de cifre după punctul zecimal din fiecare număr;
  • în rezultatul obținut după înmulțire, trebuie să numărați de la dreapta câte simboluri digitale sunt conținute în suma în ambii factori după virgulă zecimală și să puneți un semn de separare;
  • dacă există mai puține numere în produs, atunci trebuie să scrieți cât mai multe zerouri în fața lor pentru a acoperi acest număr, puneți o virgulă și adăugați întreaga parte egală cu zero.

Exemplu. Calculați produsul a două fracții zecimale: 2,25 și 3,6.

Soluţie.

Înmulțirea fracțiilor mixte

Pentru a calcula produsul a două fracții mixte, trebuie să utilizați regula pentru înmulțirea fracțiilor:

  • converti numere mixte în fracții improprii;
  • găsiți produsul numărătorilor;
  • găsiți produsul numitorilor;
  • notează rezultatul;
  • simplificați cât mai mult expresia.

Exemplu. Aflați produsul dintre 4½ și 6 2/5.

Înmulțirea unui număr cu o fracție (fracții cu un număr)

Pe lângă găsirea produsului a două fracții și a numerelor mixte, există sarcini în care trebuie să înmulțiți cu o fracție.

Deci, pentru a găsi produsul zecimalși un număr natural, aveți nevoie de:

  • scrieți numărul sub fracție, astfel încât cifrele din dreapta să fie una deasupra celeilalte;
  • găsiți produsul în ciuda virgulei;
  • în rezultatul rezultat, separă partea întreagă de partea fracțională folosind o virgulă, numărând din dreapta numărul de cifre care se află după virgulă zecimală în fracție.

Pentru a înmulți o fracție comună cu un număr, trebuie să găsiți produsul dintre numărător și factorul natural. Dacă răspunsul produce o fracție care poate fi redusă, aceasta ar trebui convertită.

Exemplu. Calculați produsul dintre 5 / 8 și 12.

Soluţie. 5 / 8 * 12 = (5*12) / 8 = 60 / 8 = 30 / 4 = 15 / 2 = 7 1 / 2.

Răspuns: 7 1 / 2.

După cum puteți vedea din exemplul anterior, a fost necesar să reduceți rezultatul rezultat și să convertiți expresia fracțională incorectă într-un număr mixt.

Înmulțirea fracțiilor se referă și la găsirea produsului unui număr în formă mixtă și a unui factor natural. Pentru a înmulți aceste două numere, ar trebui să înmulțiți întreaga parte a factorului mixt cu număr, să înmulțiți numărătorul cu aceeași valoare și să lăsați numitorul neschimbat. Dacă este necesar, trebuie să simplificați rezultatul rezultat cât mai mult posibil.

Exemplu. Aflați produsul lui 9 5 / 6 și 9.

Soluţie. 9 5 / 6 x 9 = 9 x 9 + (5 x 9) / 6 = 81 + 45 / 6 = 81 + 7 3 / 6 = 88 1 / 2.

Răspuns: 88 1 / 2.

Înmulțirea cu factori de 10, 100, 1000 sau 0,1; 0,01; 0,001

Din paragraful precedent rezultă următoarea regulă. Pentru a înmulți o fracție zecimală cu 10, 100, 1000, 10000 etc., trebuie să mutați punctul zecimal la dreapta cu atâtea cifre câte zerouri există în factorul după unu.

Exemplul 1. Aflați produsul dintre 0,065 și 1000.

Soluţie. 0,065 x 1000 = 0065 = 65.

Răspuns: 65.

Exemplul 2. Aflați produsul dintre 3,9 și 1000.

Soluţie. 3,9 x 1000 = 3,900 x 1000 = 3900.

Răspuns: 3900.

Dacă trebuie să înmulțiți un număr natural și 0,1; 0,01; 0,001; 0,0001 etc., ar trebui să mutați virgula din produsul rezultat la stânga cu atâtea caractere cifre câte zerouri sunt înaintea unu. Dacă este necesar, înaintea numărului natural sunt scrise un număr suficient de zerouri.

Exemplul 1. Aflați produsul dintre 56 și 0,01.

Soluţie. 56 x 0,01 = 0056 = 0,56.

Răspuns: 0,56.

Exemplul 2. Aflați produsul dintre 4 și 0,001.

Soluţie. 4 x 0,001 = 0004 = 0,004.

Răspuns: 0,004.

Deci, găsirea produsului diferitelor fracții nu ar trebui să provoace dificultăți, cu excepția poate calcula rezultatul; în acest caz, pur și simplu nu puteți face fără un calculator.

În secolul al V-lea î.Hr., filosoful antic grec Zenon din Elea și-a formulat celebrele aporii, dintre care cea mai faimoasă este aporia „Achile și țestoasa”. Iată cum sună:

Să presupunem că Ahile aleargă de zece ori mai repede decât țestoasa și este la o mie de pași în spatele ei. În timpul necesar lui Ahile pentru a parcurge această distanță, țestoasa se va târa o sută de pași în aceeași direcție. Când Ahile aleargă o sută de pași, țestoasa se târăște încă zece pași și așa mai departe. Procesul va continua la infinit, Ahile nu va ajunge niciodată din urmă cu țestoasa.

Acest raționament a devenit un șoc logic pentru toate generațiile următoare. Aristotel, Diogene, Kant, Hegel, Hilbert... Toți au considerat într-un fel sau altul aporia lui Zenon. Șocul a fost atât de puternic încât " ... discuțiile continuă până în prezent comunitatea științifică nu a reușit încă să ajungă la o opinie comună asupra esenței paradoxurilor ... analiza matematică, teoria seturilor, noi abordări fizice și filozofice au fost implicate în studiul problemei; ; niciunul dintre ele nu a devenit o soluție general acceptată la problemă...„[Wikipedia, „Aporia lui Zeno”. Toată lumea înțelege că sunt păcăliți, dar nimeni nu înțelege în ce constă înșelăciunea.

Din punct de vedere matematic, Zenon în aporia sa a demonstrat clar trecerea de la cantitate la . Această tranziție presupune aplicare în loc de cele permanente. Din câte am înțeles, aparatul matematic pentru utilizarea unităților de măsură variabile fie nu a fost încă dezvoltat, fie nu a fost aplicat aporiei lui Zeno. Aplicarea logicii noastre obișnuite ne duce într-o capcană. Noi, datorită inerției gândirii, aplicăm unități constante de timp valorii reciproce. Din punct de vedere fizic, se pare că timpul încetinește până când se oprește complet în momentul în care Ahile ajunge din urmă cu țestoasa. Dacă timpul se oprește, Ahile nu mai poate depăși țestoasa.

Dacă ne întoarcem logica obișnuită, totul cade la locul său. Ahile aleargă cu o viteză constantă. Fiecare segment ulterior al drumului său este de zece ori mai scurt decât cel anterior. În consecință, timpul petrecut pentru depășirea acestuia este de zece ori mai mic decât cel anterior. Dacă aplicăm conceptul de „infinit” în această situație, atunci ar fi corect să spunem „Achile va ajunge din urmă broasca testoasă infinit de repede”.

Cum să eviți această capcană logică? Rămâneți în unități constante de timp și nu treceți la unități reciproce. În limbajul lui Zeno arată astfel:

În timpul necesar lui Ahile pentru a alerga o mie de pași, țestoasa se va târa o sută de pași în aceeași direcție. Pentru următorul interval de timp, egal cu primul, Ahile va mai alerga o mie de pași, iar țestoasa se va târa o sută de pași. Acum Ahile este cu opt sute de pași înaintea broaștei țestoase.

Această abordare descrie în mod adecvat realitatea fără niciun paradox logic. Dar nu este solutie completa Probleme. Afirmația lui Einstein despre irezistibilitatea vitezei luminii este foarte asemănătoare cu aporia lui Zeno „Achile și broasca țestoasă”. Mai trebuie să studiem, să regândim și să rezolvăm această problemă. Iar soluția trebuie căutată nu în număr infinit de mare, ci în unități de măsură.

O altă aporie interesantă a lui Zeno spune despre o săgeată zburătoare:

O săgeată zburătoare este nemișcată, deoarece în fiecare moment de timp este în repaus și, deoarece este în repaus în fiecare moment de timp, este întotdeauna în repaus.

În această aporie, paradoxul logic este depășit foarte simplu - este suficient să clarificăm că în fiecare moment de timp o săgeată zburătoare este în repaus în diferite puncte din spațiu, care, de fapt, este mișcare. Un alt punct trebuie remarcat aici. Dintr-o fotografie a unei mașini pe șosea, este imposibil să se determine nici faptul mișcării acesteia, fie distanța până la ea. Pentru a determina dacă o mașină se mișcă, aveți nevoie de două fotografii făcute din același punct în momente diferite, dar nu puteți determina distanța față de ele. Pentru a determina distanța până la o mașină, aveți nevoie de două fotografii făcute din diferite puncte ale spațiului la un moment dat, dar din ele nu puteți determina faptul de mișcare (desigur, mai aveți nevoie de date suplimentare pentru calcule, trigonometria vă va ajuta ). Ceea ce vreau să atrag atenția în mod deosebit este că două puncte în timp și două puncte în spațiu sunt lucruri diferite care nu trebuie confundate, deoarece oferă oportunități diferite de cercetare.

miercuri, 4 iulie 2018

Diferențele dintre set și multiset sunt descrise foarte bine pe Wikipedia. Să vedem.

După cum puteți vedea, „nu pot exista două elemente identice într-o mulțime”, dar dacă există elemente identice într-o mulțime, un astfel de set se numește „multiset”. Ființele rezonabile nu vor înțelege niciodată o asemenea logică absurdă. Acesta este nivelul papagalilor vorbitori și al maimuțelor dresate, care nu au inteligență din cuvântul „complet”. Matematicienii acționează ca formatori obișnuiți, propovăduindu-ne ideile lor absurde.

Pe vremuri, inginerii care au construit podul se aflau într-o barcă sub pod în timp ce testau podul. Dacă podul s-a prăbușit, inginerul mediocru a murit sub dărâmăturile creației sale. Dacă podul putea rezista la sarcină, talentatul inginer a construit alte poduri.

Indiferent de cât de matematicieni se ascund în spatele expresiei „amintește-mă, sunt în casă” sau, mai degrabă, „matematica studiază concepte abstracte”, există un cordon ombilical care le conectează inextricabil cu realitatea. Acest cordon ombilical este bani. Aplicabil teorie matematică seturi către matematicienii înșiși.

Am studiat foarte bine matematica și acum stăm la casa de marcat, dăm salarii. Deci un matematician vine la noi pentru banii lui. Îi numărăm întreaga sumă și o întindem pe masa noastră în grămezi diferite, în care punem bancnote de aceeași valoare. Apoi luăm o bancnotă din fiecare grămadă și îi dăm matematicianului „setul său matematic de salariu”. Să-i explicăm matematicianului că va primi bancnotele rămase doar atunci când va dovedi că o mulțime fără elemente identice nu este egală cu o mulțime cu elemente identice. Aici începe distracția.

În primul rând, logica deputaților va funcționa: „Acest lucru poate fi aplicat altora, dar nu și mie!” Apoi vor începe să ne liniștească că bancnotele de aceeași denominație au numere de bancnote diferite, ceea ce înseamnă că nu pot fi considerate aceleași elemente. Bine, să numărăm salariile în monede - nu există numere pe monede. Aici matematicianul va începe să-și amintească frenetic de fizică: diferite monede au cantități diferite de murdărie, structura cristalină și aranjarea atomilor este unică pentru fiecare monedă...

Și acum am cel mai mult interes Întreabă: unde este linia dincolo de care elementele unui multiset se transforma in elemente ale unei multimi si invers? O astfel de linie nu există - totul este hotărât de șamani, știința nu este nici măcar aproape să zacă aici.

Uite aici. Selectăm stadioane de fotbal cu aceeași suprafață de teren. Zonele câmpurilor sunt aceleași - ceea ce înseamnă că avem un multiset. Dar dacă ne uităm la numele acestor stadioane, obținem multe, pentru că numele sunt diferite. După cum puteți vedea, același set de elemente este atât un set, cât și un multiset. Care este corect? Și aici matematicianul-șamanul-ascuțitor scoate un as de atuuri din mânecă și începe să ne vorbească fie despre un set, fie despre un multiset. În orice caz, ne va convinge că are dreptate.

Pentru a înțelege cum funcționează șamanii moderni cu teoria mulțimilor, legând-o de realitate, este suficient să răspundem la o întrebare: prin ce diferă elementele unui set de elementele altui set? Vă voi arăta, fără niciun „conceput ca nu un singur întreg” sau „neconceput ca un singur întreg”.

Duminică, 18 martie 2018

Suma cifrelor unui număr este un dans al șamanilor cu o tamburină, care nu are nimic de-a face cu matematica. Da, la lecțiile de matematică suntem învățați să găsim suma cifrelor unui număr și să o folosim, dar de aceea ei sunt șamani, pentru a-și învăța descendenții abilitățile și înțelepciunea, altfel șamanii pur și simplu vor muri.

Ai nevoie de dovezi? Deschideți Wikipedia și încercați să găsiți pagina „Suma cifrelor unui număr”. Ea nu există. Nu există nicio formulă în matematică care să poată fi folosită pentru a găsi suma cifrelor oricărui număr. La urma urmei, numerele sunt simboluri grafice cu care scriem numere, iar în limbajul matematicii sarcina sună astfel: „Găsiți suma simbolurilor grafice care reprezintă orice număr”. Matematicienii nu pot rezolva această problemă, dar șamanii o pot face cu ușurință.

Să ne dăm seama ce și cum facem pentru a găsi suma cifrelor unui număr dat. Și așa, să avem numărul 12345. Ce trebuie făcut pentru a găsi suma cifrelor acestui număr? Să luăm în considerare toți pașii în ordine.

1. Notează numărul pe o foaie de hârtie. Ce am făcut? Am convertit numărul într-un simbol numeric grafic. Aceasta nu este o operație matematică.

2. Tăiem o imagine rezultată în mai multe imagini care conțin numere individuale. Decuparea unei imagini nu este o operație matematică.

3. Convertiți simbolurile grafice individuale în numere. Aceasta nu este o operație matematică.

4. Adăugați numerele rezultate. Acum asta e matematica.

Suma cifrelor numărului 12345 este 15. Acestea sunt „cursurile de tăiere și cusut” predate de șamani pe care le folosesc matematicienii. Dar asta nu este tot.

Din punct de vedere matematic, nu contează în ce sistem de numere scriem un număr. Deci, în sisteme de numere diferite, suma cifrelor aceluiași număr va fi diferită. În matematică, sistemul numeric este indicat ca indice în dreapta numărului. CU un numar mare 12345 Nu vreau să-mi păcălesc capul, să ne uităm la numărul 26 din articolul despre . Să scriem acest număr în sisteme de numere binar, octal, zecimal și hexazecimal. Nu ne vom uita la fiecare pas la microscop, am făcut-o deja. Să ne uităm la rezultat.

După cum puteți vedea, în sisteme numerice diferite, suma cifrelor aceluiași număr este diferită. Acest rezultat nu are nimic de-a face cu matematica. Este la fel ca și cum ai determina aria unui dreptunghi în metri și centimetri, ai obține rezultate complet diferite.

Zero arată la fel în toate sistemele de numere și nu are sumă de cifre. Acesta este un alt argument în favoarea faptului că. Întrebare pentru matematicieni: cum este ceva care nu este un număr desemnat în matematică? Ce, pentru matematicieni nu există nimic în afară de numere? Pot permite asta șamanilor, dar nu și oamenilor de știință. Realitatea nu este doar despre cifre.

Rezultatul obținut ar trebui considerat ca o dovadă că sistemele numerice sunt unități de măsură pentru numere. La urma urmei, nu putem compara numerele cu unități de măsură diferite. Dacă aceleaşi acţiuni cu unităţi de măsură diferite ale aceleiaşi mărimi conduc la rezultate diferite după ce le comparăm, înseamnă că nu are nicio legătură cu matematica.

Ce este matematica reală? Acesta este momentul în care rezultatul unei operații matematice nu depinde de mărimea numărului, de unitatea de măsură folosită și de cine efectuează această acțiune.

Semnează pe uşă El deschide ușa și spune:

Oh! Asta nu este toaleta pentru femei?
- Femeie tânără! Acesta este un laborator pentru studiul sfințeniei nefilice a sufletelor în timpul înălțării lor la cer! Halo în partea de sus și săgeată în sus. Ce altă toaletă?

Femeie... Aureola de sus și săgeata în jos sunt masculine.

Dacă o astfel de operă de artă de design îți fulgerează în fața ochilor de mai multe ori pe zi,

Atunci nu este surprinzător că găsiți brusc o pictogramă ciudată în mașina dvs.:

Personal, fac un efort să văd minus patru grade la o persoană care face caca (o poză) (o compoziție din mai multe imagini: un semn minus, numărul patru, o denumire de grade). Și nu cred că această fată este o proastă care nu știe fizică. Ea are doar un stereotip puternic de a percepe imaginile grafice. Și matematicienii ne învață asta tot timpul. Iată un exemplu.

1A nu este „minus patru grade” sau „unu a”. Acesta este „pooping om” sau numărul „douăzeci și șase” în notație hexazecimală. Acei oameni care lucrează constant în acest sistem numeric percep automat un număr și o literă ca un simbol grafic.



Articole similare: