Параллельные прямые. Визуальный гид (2019). Н.Никитин Геометрия Cледствия из аксиомы

Признаки параллельности двух прямых

Теорема 1. Если при пересечении двух прямых секущей:

    накрест лежащие углы равны, или

    соответственные углы равны, или

    сумма односторонних углов равна 180°, то

прямые параллельны (рис.1).

Доказательство. Ограничимся доказательством случая 1.

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 - внешний угол треугольника АВМ, а ∠ 6 - внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

Следствие 1 . Две различные прямые на плоскости, перпендикулярные одной и той же прямой, параллельны (рис.2).

Замечание. Способ, которым мы только что доказали случай 1 теоремы 1, называется методом доказательства от противного или приведением к нелепости. Первое название этот способ получил потому, что в начале рассуждения делается предположение, противное (противоположное) тому, что требуется доказать. Приведением к нелепости он называется вследствие того, что, рассуждая на основании сделанного предположения, мы приходим к нелепому выводу (к абсурду). Получение такого вывода заставляет нас отвергнуть сделанное вначале допущение и принять то, которое требовалось доказать.

Задача 1. Построить прямую, проходящую через данную точку М и параллельную данной прямой а, не проходящей через точку М.

Решение. Проводим через точку М прямую р перпендикулярно прямой а (рис. 3).

Затем проводим через точку М прямую b перпендикулярно прямой р. Прямая b параллельна прямой а согласно следствию из теоремы 1.

Из рассмотренной задачи следует важный вывод:
через точку, не лежащую на данной прямой, всегда можно провести прямую, параллельную данной .

Основное свойство параллельных прямых состоит в следующем.

Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Рассмотрим некоторые свойства параллельных прямых, которые следуют из этой аксиомы.

1) Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую (рис.4).

2) Если две различные прямые параллельны третьей прямой, то они параллельны (рис.5).

Справедлива и следующая теорема.

Теорема 2. Если две параллельные прямые пересечены секущей, то:

    накрест лежащие углы равны;

    соответственные углы равны;

    сумма односторонних углов равна 180°.

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (см. рис.2).

Замечание. Теорема 2 называется обратной теореме 1. Заключение теоремы 1 является условием теоремы 2. А условие теоремы 1 является заключением теоремы 2. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна.

Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Пример 1. Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.

Решение. Пусть условию отвечает рисунок 6.

Опре-де-ле-ние:

Две пря-мые на-зы-ва-ют-ся па-рал-лель-ны-ми , если они не пе-ре-се-ка-ют-ся (Рис. 1). Обо-зна-ча-ет-ся это так: .

Через точку, не ле-жа-щую на дан-ной пря-мой, про-хо-дит толь-ко одна пря-мая, па-рал-лель-ная дан-ной(Рис. 2).

Cледствия из аксиомы

След-ствие 1:

Если пря-мая пе-ре-се-ка-ет одну из па-рал-лель-ных пря-мых, то она пе-ре-се-ка-ет и дру-гую.

Дано: .

До-ка-зать: .

До-ка-за-тель-ство:

Будем до-ка-зы-вать от про-тив-но-го. Пред-по-ло-жим, что с не пе-ре-се-ка-ет пря-мую b (Рис. 4).

Тогда:(по усло-вию), (по пред-по-ло-же-нию). То есть через точку М про-хо-дят две пря-мые (а и c ), па-рал-лель-ные пря-мой b . А это про-ти-во-ре-чит ак-сио-ме. Зна-чит, наше пред-по-ло-же-ние невер-ное. Тогда пря-мая c пе-ре-се-чет пря-мую b .

След-ствие 2:

Если две пря-мые па-рал-лель-ны тре-тьей пря-мой, то они па-рал-лель-ны (Рис. 5).

Дано: .

До-ка-зать: .

До-ка-за-тель-ство:

Будем до-ка-зы-вать от про-тив-но-го. Пред-по-ло-жим, что пря-мые a и b пе-ре-се-ка-ют-ся в неко-то-рой точке М (Рис. 6).

Таким об-ра-зом, по-лу-ча-ем про-ти-во-ре-чие с ак-си-о-мой: через точку М про-хо-дят две пря-мые, од-но-вре-мен-но па-рал-лель-ные тре-тьей пря-мой.

Сле-до-ва-тель-но, наше пред-по-ло-же-ние невер-но. Тогда .

Теоремы о свойствах параллельных прямы

Тео-ре-ма 1:

Если две пря-мые пе-ре-се-че-ны се-ку-щей, то на-крест ле-жа-щие углы равны (Рис. 7).

Дано: .

До-ка-зать: .

До-ка-за-тель-ство:

Будем до-ка-зы-вать от про-тив-но-го. Пред-по-ло-жим, что: .

Тогда от луча MN можно от-ло-жить един-ствен-ный угол PMN , ко-то-рый будет равен 2 (Рис. 7). Но тогда PMN и 2 - на-крест ле-жа-щие и равны. Тогда пря-мые PM и b - па-рал-лель-ны. Тогда через точку М про-хо-дят две пря-мые, па-рал-лель-ные тре-тьей. А имен-но:

По-лу-ча-ем про-ти-во-ре-чие с ак-си-о-мой. Зна-чит, наше пред-по-ло-же-ние невер-но. То есть: .

След-ствие:

Если пря-мая пер-пен-ди-ку-ляр-на одной из па-рал-лель-ных пря-мых, то она пер-пен-ди-ку-ляр-на и вто-рой.

Дано:

До-ка-зать:

До-ка-за-тель-ство:

1. с пе-ре-се-ка-ет а , а зна-чит, и пе-ре-се-ка-ет па-рал-лель-ную ей пря-мую, то есть b . Тогда с - се-ку-щая по от-но-ше-нию к а и b .

2. по-сколь-ку они яв-ля-ют-ся на-крест ле-жа-щи-ми. Тогда . То есть.

Тео-ре-ма 2:

Если две па-рал-лель-ные пря-мые пе-ре-се-че-ны се-ку-щей, то со-от-вет-ствен-ные углы равны.

Дано: - се-ку-щая.

До-ка-зать: (Рис. 9).

До-ка-за-тель-ство:

Если , то из преды-ду-щей тео-ре-мы сле-ду-ет, что на-крест ле-жа-щие углы равны. То есть .

AB и С D пересечены третьей прямой MN , то образовавшиеся при этом углы получают попарно такие названия:

соответственные углы : 1 и 5, 4 и 8, 2 и 6, 3 и 7;

внутренние накрест лежащие углы : 3 и 5, 4 и 6;

внешние накрест лежащие углы : 1 и 7, 2 и 8;

внутренние односторонние углы : 3 и 6, 4 и 5;

внешние односторонние углы : 1 и 8, 2 и 7.

Так, ∠ 2 = ∠ 4 и ∠ 8 = ∠ 6, но по доказанному ∠ 4 = ∠ 6.

Следовательно, ∠ 2 =∠ 8.

3. Соответственные углы 2 и 6 одинаковы, поскольку ∠ 2 = ∠ 4, а ∠ 4 = ∠ 6. Также убедимся в равенстве других соответственных углов.

4. Сумма внутренних односторонних углов 3 и 6 будет 2d, потому что сумма смежных углов 3 и 4 равна 2d = 180 0 , а ∠ 4 можно заменить идентичным ему ∠ 6. Также убедимся, что сумма углов 4 и 5 равна 2d.

5. Сумма внешних односторонних углов будет 2d, потому что эти углы равны соответственно внутренним односторонним углам , как углы вертикальные .

Из выше доказанного обоснования получаем обратные теоремы.

Когда при пересечении двух прямых произвольной третьей прямой получим, что:

1. Внутренние накрест лежащие углы одинаковы;

или 2. Внешние накрест лежащие углы одинаковые;

или 3. Соответственные углы одинаковые;

или 4. Сумма внутренних односторонних углов равна 2d = 180 0 ;

или 5. Сумма внешних односторонних равна 2d = 180 0 ,

то первые две прямые параллельны.


Эта статья о параллельных прямых и о параллельности прямых. Сначала дано определение параллельных прямых на плоскости и в пространстве, введены обозначения, приведены примеры и графические иллюстрации параллельных прямых. Далее разобраны признаки и условия параллельности прямых. В заключении показаны решения характерных задач на доказательство параллельности прямых, которые заданы некоторыми уравнениями прямой в прямоугольной системе координат на плоскости и в трехмерном пространстве.

Навигация по странице.

Параллельные прямые – основные сведения.

Определение.

Две прямые на плоскости называются параллельными , если они не имеют общих точек.

Определение.

Две прямые в трехмерном пространстве называются параллельными , если они лежат в одной плоскости и не имеют общих точек.

Обратите внимание, что оговорка «если они лежат в одной плоскости» в определении параллельных прямых в пространстве очень важна. Поясним этот момент: две прямые в трехмерном пространстве, которые не имеют общих точек и не лежат в одной плоскости не являются параллельными, а являются скрещивающимися.

Приведем несколько примеров параллельных прямых. Противоположные края тетрадного листа лежат на параллельных прямых. Прямые, по которым плоскость стены дома пересекает плоскости потолка и пола, являются параллельными. Железнодорожные рельсы на ровной местности также можно рассматривать как параллельные прямые.

Для обозначения параллельных прямых используют символ «». То есть, если прямые а и b параллельны, то можно кратко записать а b .

Обратите внимание: если прямые a и b параллельны, то можно сказать, что прямая a параллельна прямой b , а также, что прямая b параллельна прямой a .

Озвучим утверждение, которое играет важную роль при изучении параллельных прямых на плоскости: через точку, не лежащую на данной прямой, проходит единственная прямая, параллельная данной. Это утверждение принимается как факт (оно не может быть доказано на основе известных аксиом планиметрии), и оно называется аксиомой параллельных прямых.

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых (ее доказательство Вы можете найти в учебнике геометрии 10-11 класс, который указан в конце статьи в списке литературы).

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых.

Параллельность прямых - признаки и условия параллельности.

Признаком параллельности прямых является достаточное условие параллельности прямых, то есть, такое условие, выполнение которого гарантирует параллельность прямых. Иными словами, выполнение этого условия достаточно для того, чтобы констатировать факт параллельности прямых.

Также существуют необходимые и достаточные условия параллельности прямых на плоскости и в трехмерном пространстве.

Поясним смысл фразы «необходимое и достаточное условие параллельности прямых».

С достаточным условием параллельности прямых мы уже разобрались. А что же такое «необходимое условие параллельности прямых»? По названию «необходимое» понятно, что выполнение этого условия необходимо для параллельности прямых. Иными словами, если необходимое условие параллельности прямых не выполнено, то прямые не параллельны. Таким образом, необходимое и достаточное условие параллельности прямых – это условие, выполнение которого как необходимо, так и достаточно для параллельности прямых. То есть, с одной стороны это признак параллельности прямых, а с другой стороны – это свойство, которым обладают параллельные прямые.

Прежде чем сформулировать необходимое и достаточное условие параллельности прямых, целесообразно напомнить несколько вспомогательных определений.

Секущая прямая – это прямая, которая пересекает каждую из двух заданных несовпадающих прямых.

При пересечении двух прямых секущей образуются восемь неразвернутых . В формулировке необходимого и достаточного условия параллельности прямых участвуют так называемые накрест лежащие, соответственные и односторонние углы . Покажем их на чертеже.

Теорема.

Если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180 градусам.

Покажем графическую иллюстрацию этого необходимого и достаточного условия параллельности прямых на плоскости.


Доказательства этих условий параллельности прямых Вы можете найти в учебниках геометрии за 7 -9 классы.

Заметим, что эти условия можно использовать и в трехмерном пространстве – главное, чтобы две прямые и секущая лежали в одной плоскости.

Приведем еще несколько теорем, которые часто используются при доказательстве параллельности прямых.

Теорема.

Если две прямые на плоскости параллельны третьей прямой, то они параллельны. Доказательство этого признака следует из аксиомы параллельных прямых.

Существует аналогичное условие параллельности прямых в трехмерном пространстве.

Теорема.

Если две прямые в пространстве параллельны третьей прямой, то они параллельны. Доказательство этого признака рассматривается на уроках геометрии в 10 классе.

Проиллюстрируем озвученные теоремы.

Приведем еще одну теорему, позволяющую доказывать параллельность прямых на плоскости.

Теорема.

Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.

Существует аналогичная теорема для прямых в пространстве.

Теорема.

Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.

Изобразим рисунки, соответствующие этим теоремам.


Все сформулированные выше теоремы, признаки и необходимые и достаточные условия прекрасно подходят для доказательства параллельности прямых методами геометрии. То есть, чтобы доказать параллельность двух заданных прямых нужно показать, что они параллельны третьей прямой, или показать равенство накрест лежащих углов и т.п. Множество подобных задач решается на уроках геометрии в средней школе. Однако следует отметить, что во многих случаях удобно пользоваться методом координат для доказательства параллельности прямых на плоскости или в трехмерном пространстве. Сформулируем необходимые и достаточные условия параллельности прямых, которые заданы в прямоугольной системе координат.

Параллельность прямых в прямоугольной системе координат.

В этом пункте статьи мы сформулируем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от вида уравнений, определяющих эти прямые, а также приведем подробные решения характерных задач.

Начнем с условия параллельности двух прямых на плоскости в прямоугольной системе координат Oxy . В основе его доказательства лежит определение направляющего вектора прямой и определение нормального вектора прямой на плоскости.

Теорема.

Для параллельности двух несовпадающих прямых на плоскости необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, или нормальные векторы этих прямых были коллинеарны, или направляющий вектор одной прямой был перпендикулярен нормальному вектору второй прямой.

Очевидно, условие параллельности двух прямых на плоскости сводится к (направляющих векторов прямых или нормальных векторов прямых) или к (направляющего вектора одной прямой и нормального вектора второй прямой). Таким образом, если и - направляющие векторы прямых a и b , а и - нормальные векторы прямых a и b соответственно, то необходимое и достаточное условие параллельности прямых а и b запишется как , или , или , где t - некоторое действительное число. В свою очередь координаты направляющих и (или) нормальных векторов прямых a и b находятся по известным уравнениям прямых.

В частности, если прямую a в прямоугольной системе координат Oxy на плоскости задает общее уравнение прямой вида , а прямую b - , то нормальные векторы этих прямых имеют координаты и соответственно, а условие параллельности прямых a и b запишется как .

Если прямой a соответствует уравнение прямой с угловым коэффициентом вида , а прямой b - , то нормальные векторы этих прямых имеют координаты и , а условие параллельности этих прямых примет вид . Следовательно, если прямые на плоскости в прямоугольной системе координат параллельны и могут быть заданы уравнениями прямых с угловыми коэффициентами, то угловые коэффициенты прямых будут равны. И обратно: если несовпадающие прямые на плоскости в прямоугольной системе координат могут быть заданы уравнениями прямой с равными угловыми коэффициентами, то такие прямые параллельны.

Если прямую a и прямую b в прямоугольной системе координат определяют канонические уравнения прямой на плоскости вида и , или параметрические уравнения прямой на плоскости вида и соответственно, то направляющие векторы этих прямых имеют координаты и , а условие параллельности прямых a и b записывается как .

Разберем решения нескольких примеров.

Пример.

Параллельны ли прямые и ?

Решение.

Перепишем уравнение прямой в отрезках в виде общего уравнения прямой: . Теперь видно, что - нормальный вектор прямой , а - нормальный вектор прямой . Эти векторы не коллинеарны, так как не существует такого действительного числа t , для которого верно равенство (). Следовательно, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, поэтому, заданные прямые не параллельны.

Ответ:

Нет, прямые не параллельны.

Пример.

Являются ли прямые и параллельными?

Решение.

Приведем каноническое уравнение прямой к уравнению прямой с угловым коэффициентом: . Очевидно, что уравнения прямых и не одинаковые (в этом случае заданные прямые были бы совпадающими) и угловые коэффициенты прямых равны, следовательно, исходные прямые параллельны.

Если при пересечении двух прямых секущей сумма внутренних односторонних углов не равна 180°, то прямые не параллельны, то есть при достаточном продолжении пересекаются.

Доказательство. Если бы эти прямые не пересекались, то они были бы параллельны, и тогда сумма внутренних односторонних углов равнялась бы 180°, что противоречит условию. Теорема доказана.

Сформулируйте обратную теорему.

3.3. Взаимное расположение четырех прямых.

Мы изучили различные случаи взаимного расположения двух и трёх прямых на плоскости. Теперь изучим взаимное расположения четырёх прямых на плоскости. Изобразим разные случаи.

а ) две пересекающиеся прямые пересекают две другие пересекающиеся прямые:

б) каждая из двух пересекающиеся прямых пересекает две параллельные прямые:

в) две параллельные прямые пересечены двумя параллельными прямыми:

г) три параллельные прямые пересечены третьей прямой:

д) все четыре прямые параллельны:

Какие фигуры вы можете увидеть на этих рисунках? Например, на рис.3.23, слева, видна фигура, состоящая из четырех отрезков, два из которых параллельны. На рис.3.23 видно , что при пересечении двух параллельных прямых двумя другими параллельными прямыми получилась фигура, у которой противоположные стороны попарно параллельны и равны. Докажем это.

Лемма 1. При пересечении двух параллельных прямых двумя другими параллельными между собой прямыми получается фигура, у которой противоположные стороны параллельны.

Доказательство. Пусть параллельные между собой прямые a, b и параллельные между собой прямые c, d пересекаются в точках A, B, C, D (рис.3.26).

Докажем, что АВ=С D и А D=ВС. Проведём отрезок АС (рис.3.27, а). Для начала докажем, что АВ=С D .

Углы ÐACD иÐС AB a и b и секущей AC. Углы ÐDAC иÐ ACB равны как внутренние накрест лежащие при параллельных прямых c и d и секущей AC.

На луче АВ отложим отрезок АЕ , равный отрезку CD (рис.3.27, б). Углы ÐACD иÐС AE равны, значит, их соответственные поперечины AD и CE равны. То есть АЕ и DC – соответственные поперечины углов ÐDAC иÐ ACB, но они равны по построению, а значит, угол Ð ACЕ равен углу ÐDAC. Но угол ÐDAC равен углу Ð ACB. Это означает, что равны углы Ð ACЕ иÐ ACB, то есть точка Е лежит на луче СВ . По построению точка Е лежит на луче АВ . Но эти лучи пересекаются в точке В, то есть точки В и Е совпадают и АВ=АЕ= CD .

Итак мы доказали, что равны отрезки АВ и С D . Отрезки AD и CB равны как соответственные поперечины равных углов. Утверждение леммы 1 доказано.

Следствие 5: Противоположные углы фигуры ABCD равны (рис.3.27).



Статьи по теме: