Как решать логарифмы примеры простые. Сбор и использование персональной информации. Уравнения и неравенства

    Начнем со свойства логарифма единицы . Его формулировка такова: логарифм единицы равен нулю, то есть, log a 1=0 для любого a>0 , a≠1 . Доказательство не вызывает сложностей: так как a 0 =1 для любого a , удовлетворяющего указанным выше условиям a>0 и a≠1 , то доказываемое равенство log a 1=0 сразу следует из определения логарифма.

    Приведем примеры применения рассмотренного свойства: log 3 1=0 , lg1=0 и .

    Переходим к следующему свойству: логарифм числа, равного основанию, равен единице , то есть, log a a=1 при a>0 , a≠1 . Действительно, так как a 1 =a для любого a , то по определению логарифма log a a=1 .

    Примерами использования этого свойства логарифмов являются равенства log 5 5=1 , log 5,6 5,6 и lne=1 .

    К примеру, log 2 2 7 =7 , lg10 -4 =-4 и .

    Логарифм произведения двух положительных чисел x и y равен произведению логарифмов этих чисел: log a (x·y)=log a x+log a y , a>0 , a≠1 . Докажем свойство логарифма произведения. В силу свойств степени a log a x+log a y =a log a x ·a log a y , а так как по основному логарифмическому тождеству a log a x =x и a log a y =y , то a log a x ·a log a y =x·y . Таким образом, a log a x+log a y =x·y , откуда по определению логарифма вытекает доказываемое равенство.

    Покажем примеры использования свойства логарифма произведения: log 5 (2·3)=log 5 2+log 5 3 и .

    Свойство логарифма произведения можно обобщить на произведение конечного числа n положительных чисел x 1 , x 2 , …, x n как log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n . Данное равенство без проблем доказывается .

    Например, натуральных логарифм произведения можно заменить суммой трех натуральных логарифмов чисел 4 , e , и .

    Логарифм частного двух положительных чисел x и y равен разности логарифмов этих чисел. Свойству логарифма частного соответствует формула вида , где a>0 , a≠1 , x и y – некоторые положительные числа. Справедливость этой формулы доказывается как и формула логарифма произведения: так как , то по определению логарифма .

    Приведем пример использования этого свойства логарифма: .

    Переходим к свойству логарифма степени . Логарифм степени равен произведению показателя степени на логарифм модуля основания этой степени. Запишем это свойство логарифма степени в виде формулы: log a b p =p·log a |b| , где a>0 , a≠1 , b и p такие числа, что степень b p имеет смысл и b p >0 .

    Сначала докажем это свойство для положительных b . Основное логарифмическое тождество позволяет нам представить число b как a log a b , тогда b p =(a log a b) p , а полученное выражение в силу свойство степени равно a p·log a b . Так мы приходим к равенству b p =a p·log a b , из которого по определению логарифма заключаем, что log a b p =p·log a b .

    Осталось доказать это свойство для отрицательных b . Здесь замечаем, что выражение log a b p при отрицательных b имеет смысл лишь при четных показателях степени p (так как значение степени b p должно быть больше нуля, в противном случае логарифм не будет иметь смысла), а в этом случае b p =|b| p . Тогда b p =|b| p =(a log a |b|) p =a p·log a |b| , откуда log a b p =p·log a |b| .

    Например, и ln(-3) 4 =4·ln|-3|=4·ln3 .

    Из предыдущего свойства вытекает свойство логарифма из корня : логарифм корня n -ой степени равен произведению дроби 1/n на логарифм подкоренного выражения, то есть, , где a>0 , a≠1 , n – натуральное число, большее единицы, b>0 .

    Доказательство базируется на равенстве (смотрите ), которое справедливо для любых положительных b , и свойстве логарифма степени: .

    Вот пример использования этого свойства: .

    Теперь докажем формулу перехода к новому основанию логарифма вида . Для этого достаточно доказать справедливость равенства log c b=log a b·log c a . Основное логарифмическое тождество позволяет нам число b представить как a log a b , тогда log c b=log c a log a b . Осталось воспользоваться свойством логарифма степени: log c a log a b =log a b·log c a . Так доказано равенство log c b=log a b·log c a , а значит, доказана и формула перехода к новому основанию логарифма .

    Покажем пару примеров применения этого свойства логарифмов: и .

    Формула перехода к новому основанию позволяет переходить к работе с логарифмами, имеющими «удобное» основание. Например, с ее помощью можно перейти к натуральным или десятичным логарифмам, чтобы можно было вычислить значение логарифма по таблице логарифмов . Формула перехода к новому основанию логарифма также позволяет в некоторых случаях находить значение данного логарифма, когда известны значения некоторых логарифмов с другими основаниями.

    Часто используется частный случай формулы перехода к новому основанию логарифма при c=b вида . Отсюда видно, что log a b и log b a – . К примеру, .

    Также часто используется формула , которая удобна при нахождении значений логарифмов. Для подтверждения своих слов покажем, как с ее помощью вычисляется значение логарифма вида . Имеем . Для доказательства формулы достаточно воспользоваться формулой перехода к новому основанию логарифма a : .

    Осталось доказать свойства сравнения логарифмов.

    Докажем, что для любых положительных чисел b 1 и b 2 , b 1 log a b 2 , а при a>1 – неравенство log a b 1

    Наконец, осталось доказать последнее из перечисленных свойств логарифмов. Ограничимся доказательством его первой части, то есть, докажем, что если a 1 >1 , a 2 >1 и a 1 1 справедливо log a 1 b>log a 2 b . Остальные утверждения этого свойства логарифмов доказываются по аналогичному принципу.

    Воспользуемся методом от противного. Предположим, что при a 1 >1 , a 2 >1 и a 1 1 справедливо log a 1 b≤log a 2 b . По свойствам логарифмов эти неравенства можно переписать как и соответственно, а из них следует, что log b a 1 ≤log b a 2 и log b a 1 ≥log b a 2 соответственно. Тогда по свойствам степеней с одинаковыми основаниями должны выполняться равенства b log b a 1 ≥b log b a 2 и b log b a 1 ≥b log b a 2 , то есть, a 1 ≥a 2 . Так мы пришли к противоречию условию a 1

Список литературы.

  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

В задаче B7 дается некоторое выражение, которое нужно упростить. В результате должно получиться обычное число, которое можно записать в бланке ответов. Все выражения условно делятся на три типа:

  1. Логарифмические,
  2. Показательные,
  3. Комбинированные.

Показательные и логарифмические выражения в чистом виде практически не встречаются. Однако знать, как они вычисляются, совершенно необходимо.

В целом, задача B7 решается достаточно просто и вполне под силу среднему выпускнику. Отсутствие четких алгоритмов компенсируется в ней стандартностью и однообразностью. Научиться решать такие задачи можно просто за счет большого количества тренировок.

Логарифмические выражения

Подавляющее большинство задач B7 содержат логарифмы в том или ином виде. Эта тема традиционно считается сложной, поскольку ее изучение приходится, как правило, на 11 класс — эпоху массовой подготовки к выпускным экзаменам. В результате многие выпускники имеют весьма смутное представление о логарифмах.

Но в этой задаче никто и не требует глубоких теоретических познаний. Нам будут встречаться лишь самые простые выражения, которые требуют незамысловатых рассуждений и вполне могут быть освоены самостоятельно. Ниже приведены основные формулы, которые надо знать, чтобы справиться с логарифмами:

Кроме того, надо уметь заменять корни и дроби на степени с рациональным показателем, иначе в некоторых выражениях выносить из под знака логарифма будет просто нечего. Формулы замены:

Задача. Найти значения выражений:
log 6 270 − log 6 7,5
log 5 775 − log 5 6,2

Первые два выражения преобразуются как разность логарифмов:
log 6 270 − log 6 7,5 = log 6 (270: 7,5) = log 6 36 = 2;
log 5 775 − log 5 6,2 = log 5 (775: 6,2) = log 5 125 = 3.

Для вычисления третьего выражения придется выделять степени — как в основании, так и в аргументе. Для начала найдем внутренний логарифм:

Затем — внешний:

Конструкции вида log a log b x многим кажутся сложными и непонятыми. А между тем, это всего лишь логарифм от логарифма, т.е. log a (log b x ). Сначала вычисляется внутренний логарифм (положим log b x = c ), а затем внешний: log a c .

Показательные выражения

Будем называть показательным выражением любую конструкцию вида a k , где числа a и k — произвольные постоянные, причем a > 0. Методы работы с такими выражениями достаточно просты и рассматриваются на уроках алгебры 8-го класса.

Ниже приведены основные формулы, которые обязательно надо знать. Применение этих формул на практике, как правило, не вызывает проблем.

  1. a n · a m = a n + m ;
  2. a n / a m = a n − m ;
  3. (a n ) m = a n · m ;
  4. (a · b ) n = a n · b n ;
  5. (a : b ) n = a n : b n .

Если встретилось сложное выражение со степенями, и не понятно, как к нему подступиться, используют универсальный прием — разложение на простые множители. В результате большие числа в основаниях степеней заменяются простыми и понятными элементами. Затем останется лишь применить указанные выше формулы — и задача будет решена.

Задача. Найти значения выражений: 7 9 · 3 11: 21 8 , 24 7: 3 6: 16 5 , 30 6: 6 5: 25 2 .

Решение. Разложим все основания степеней на простые множители:
7 9 · 3 11: 21 8 = 7 9 · 3 11: (7 · 3) 8 = 7 9 · 3 11: (7 8 · 3 8) = 7 9 · 3 11: 7 8: 3 8 = 7 · 3 3 = 189.
24 7: 3 6: 16 5 = (3 · 2 3) 7: 3 6: (2 4) 5 = 3 7 · 2 21: 3 6: 2 20 = 3 · 2 = 6.
30 6: 6 5: 25 2 = (5 · 3 · 2) 6: (3 · 2) 5: (5 2) 2 = 5 6 · 3 6 · 2 6: 3 5: 2 5: 5 4 = 5 2 · 3 · 2 = 150.

Комбинированные задачи

Если знать формулы, то все показательные и логарифмические выражения решаются буквально в одну строчку. Однако в задаче B7 степени и логарифмы могут объединяться, образуя довольно неслабые комбинации.

Сегодня мы поговорим о формулах логарифмов и дадим показательные примеры решения .

Сами по себе подразумевают шаблоны решения согласно основным свойствам логарифмов. Прежде применять формулы логарифмов для решения напомним для вас, сначала все свойства:

Теперь на основе этих формул(свойств), покажем примеры решения логарифмов .

Примеры решения логарифмов на основании формул.

Логарифм положительного числа b по основанию a (обозначается log a b) - это показатель степени, в которую надо возвести a, чтобы получить b, при этом b > 0, a > 0, а 1.

Согласно определения log a b = x, что равносильно a x = b, поэтому log a a x = x.

Логарифмы , примеры:

log 2 8 = 3, т.к. 2 3 = 8

log 7 49 = 2, т.к. 7 2 = 49

log 5 1/5 = -1, т.к. 5 -1 = 1/5

Десятичный логарифм - это обычный логарифм, в основании которого находится 10. Обозначается как lg.

log 10 100 = 2, т.к. 10 2 = 100

Натуральный логарифм - также обычный логарифм логарифм, но уже с основанием е (е = 2,71828... - иррациональное число). Обозначается как ln.

Формулы или свойства логарифмов желательно запомнить, потому что они понадобятся нам в дальнейшем при решении логарифмов, логарифмических уравнений и неравенств. Давайте еще раз отработаем каждую формулу на примерах.

  • Основное логарифмическое тождество
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Логарифм произведения равен сумме логарифмов
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1*10) = log 3 81 = 4

  • Логарифм частного равен разности логарифмов
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Свойства степени логарифмируемого числа и основания логарифма

    Показатель степени логарифмируемого числа log a b m = mlog a b

    Показатель степени основания логарифма log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    если m = n, получим log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Переход к новому основанию
    log a b = log c b/log c a,

    если c = b, получим log b b = 1

    тогда log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Как видите, формулы логарифмов не так сложны как кажутся. Теперь рассмотрев примеры решения логарифмов мы можем переходить к логарифмическим уравнениям. Примеры решения логарифмических уравнений мы более подробно рассмотрим в статье: " ". Не пропустите!

Если у вас остались вопросы по решению, пишите их в комментариях к статье.

Заметка: решили получить образование другого класса обучение за рубежом как вариант развития событий.

Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь - собственно, определение логарифма:

Логарифм по основанию a от аргумента x - это степень, в которую надо возвести число a , чтобы получить число x .

Обозначение: log a x = b , где a - основание, x - аргумент, b - собственно, чему равен логарифм.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log 2 64 = 6 , поскольку 2 6 = 64 .

Операцию нахождения логарифма числа по заданному основанию называют логарифмированием. Итак, дополним нашу таблицу новой строкой:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log 2 5 . Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке . Потому что 2 2 < 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log 2 5 , log 3 8 , log 5 100 .

Важно понимать, что логарифм - это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где - аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

Перед нами - не что иное как определение логарифма. Вспомните: логарифм - это степень , в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень - на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии - и никакой путаницы не возникает.

С определением разобрались - осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

  1. Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.
  2. Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b ⇒ x > 0 , a > 0 , a ≠ 1 .

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log 2 0,5 = −1 , т.к. 0,5 = 2 −1 .

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

  1. Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;
  2. Решить относительно переменной b уравнение: x = a b ;
  3. Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

Задача. Вычислите логарифм: log 5 25

  1. Представим основание и аргумент как степень пятерки: 5 = 5 1 ; 25 = 5 2 ;
  2. Составим и решим уравнение:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2 ;

  3. Получили ответ: 2.

Задача. Вычислите логарифм:

Задача. Вычислите логарифм: log 4 64

  1. Представим основание и аргумент как степень двойки: 4 = 2 2 ; 64 = 2 6 ;
  2. Составим и решим уравнение:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3 ;
  3. Получили ответ: 3.

Задача. Вычислите логарифм: log 16 1

  1. Представим основание и аргумент как степень двойки: 16 = 2 4 ; 1 = 2 0 ;
  2. Составим и решим уравнение:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0 ;
  3. Получили ответ: 0.

Задача. Вычислите логарифм: log 7 14

  1. Представим основание и аргумент как степень семерки: 7 = 7 1 ; 14 в виде степени семерки не представляется, поскольку 7 1 < 14 < 7 2 ;
  2. Из предыдущего пункта следует, что логарифм не считается;
  3. Ответ - без изменений: log 7 14.

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто - достаточно разложить его на простые множители. Если в разложении есть хотя бы два различных множителя, число не является точной степенью.

Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14 .

8 = 2 · 2 · 2 = 2 3 - точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - точная степень;
35 = 7 · 5 - снова не является точной степенью;
14 = 7 · 2 - опять не точная степень;

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

Десятичный логарифм от аргумента x - это логарифм по основанию 10, т.е. степень, в которую надо возвести число 10, чтобы получить число x . Обозначение: lg x .

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 - и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log 10 x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

Натуральный логарифм от аргумента x - это логарифм по основанию e , т.е. степень, в которую надо возвести число e , чтобы получить число x . Обозначение: ln x .

Многие спросят: что еще за число e ? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:
e = 2,718281828459...

Не будем углубляться, что это за число и зачем нужно. Просто помните, что e - основание натурального логарифма:
ln x = log e x

Таким образом, ln e = 1 ; ln e 2 = 2 ; ln e 16 = 16 - и т.д. С другой стороны, ln 2 - иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.

Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.

Задания, решение которых заключается в преобразовании логарифмических выражений , довольно часто встречаются на ЕГЭ.

Чтобы успешно справиться с ними при минимальной затрате времени кроме основных логарифмических тождеств, необходимо знать и правильно использовать ещё некоторые формулы.

Это: a log а b = b, где а, b > 0, а ≠ 1 (Она вытекает непосредственно из определения логарифма).

log a b = log с b / log с а или log а b = 1/log b а
где а, b, с > 0; а, с ≠ 1.

log а m b n = (m/n) log |а| |b|
где а, b > 0, а ≠ 1, m, n Є R, n ≠ 0.

а log с b = b log с а
где а, b, с > 0 и а, b, с ≠ 1

Чтобы показать справедливость четвертого равенства прологарифмируем левую и правую часть по основанию а. Получим log а (а log с b) = log а (b log с а) или log с b = log с а · log а b; log с b = log с а · (log с b / log с а); log с b = log с b.

Мы доказали равенство логарифмов, значит, равны и выражения, стоящие под логарифмами. Формула 4 доказана.

Пример 1.

Вычислите 81 log 27 5 log 5 4 .

Решение.

81 = 3 4 , 27 = 3 3 .

log 27 5 = 1/3 log 3 5, log 5 4 = log 3 4 / log 3 5. Следовательно,

log 27 5 · log 5 4 = 1/3 log 3 5 · (log 3 4 / log 3 5) = 1/3 log 3 4.

Тогда 81 log 27 5 log 5 4 = (3 4) 1/3 log 3 4 = (3 log 3 4) 4/3 = (4) 4/3 = 4 3 √4.

Самостоятельно можно выполнить следующее задание.

Вычислить (8 log 2 3 + 3 1/ log 2 3) - log 0,2 5.

В качестве подсказки 0,2 = 1/5 = 5 -1 ; log 0,2 5 = -1.

Ответ: 5.

Пример 2.

Вычислите (√11) log √3 9- log 121 81 .

Решение.

Выполним замену выражений: 9 = 3 2 , √3 = 3 1/2 , log √3 9 = 4,

121 = 11 2 , 81 = 3 4 , log 121 81 = 2 log 11 3 (использовалась формула 3).

Тогда (√11) log √3 9- log 121 81 = (11 1/2) 4-2 log 11 3 = (11) 2- log 11 3 = 11 2 / (11) log 11 3 = 11 2 / (11 log 11 3) = 121/3.

Пример 3.

Вычислите log 2 24/ log 96 2- log 2 192 / log 12 2.

Решение.

Логарифмы, содержащиеся в примере, заменим логарифмами с основанием 2.

log 96 2 = 1/log 2 96 = 1/log 2 (2 5 · 3) = 1/(log 2 2 5 + log 2 3) = 1/(5 + log 2 3);

log 2 192 = log 2 (2 6 · 3) = (log 2 2 6 + log 2 3) = (6 + log 2 3);

log 2 24 = log 2 (2 3 · 3) = (log 2 2 3 + log 2 3) = (3 + log 2 3);

log 12 2 = 1/log 2 12 = 1/log 2 (2 2 · 3) = 1/(log 2 2 2 + log 2 3) = 1/(2 + log 2 3).

Тогда log 2 24 / log 96 2 – log 2 192 / log 12 2 = (3 + log 2 3) / (1/(5 + log 2 3)) – ((6 + log 2 3) / (1/(2 + log 2 3)) =

= (3 + log 2 3) · (5 + log 2 3) – (6 + log 2 3)(2 + log 2 3).

После раскрытия скобок и приведения подобных слагаемых получим число 3. (При упрощении выражения можно log 2 3 обозначить через n и упрощать выражение

(3 + n) · (5 + n) – (6 + n)(2 + n)).

Ответ: 3.

Самостоятельно можно выполнить следующее задание:

Вычислить (log 3 4 + log 4 3 + 2) · log 3 16 · log 2 144 3 .

Здесь необходимо сделать переход к логарифмам по основанию 3 и разложение на простые множители больших чисел.

Ответ:1/2

Пример 4.

Даны три числа А = 1/(log 3 0,5), В = 1/(log 0,5 3), С = log 0,5 12 – log 0,5 3. Расположите их в порядке возрастания.

Решение.

Преобразуем числа А = 1/(log 3 0,5) = log 0,5 3; С = log 0,5 12 – log 0,5 3 = log 0,5 12/3 = log 0,5 4 = -2.

Сравним их

log 0,5 3 > log 0,5 4 = -2 и log 0,5 3 < -1 = log 0,5 2, так как функция у = log 0,5 х – убывающая.

Или -2 < log 0,5 3 < -1. Тогда -1 < 1/(log 0,5 3) < -1/2.

Ответ. Следовательно, порядок размещения чисел: С; А; В.

Пример 5.

Сколько целых чисел расположено на интервале (log 3 1 / 16 ; log 2 6 48).

Решение.

Определим между какими степенями числа 3 находится число 1 / 16 . Получим 1 / 27 < 1 / 16 < 1 / 9 .

Так как функция у = log 3 х – возрастающая, то log 3 (1 / 27) < log 3 (1 / 16) < log 3 (1 / 9); -3 < log 3 (1 / 16) < -2.

log 6 48 = log 6 (36 · 4 / 3) = log 6 36 + log 6 (4 / 3) = 2 + log 6 (4 / 3). Сравним log 6 (4 / 3) и 1 / 5 . А для этого сравним числа 4 / 3 и 6 1/5 . Возведём оба числа в 5 степень. Получим (4 / 3) 5 = 1024 / 243 = 4 52 / 243 < 6. Следовательно,

log 6 (4 / 3) < 1 / 5 . 2 < log 6 48 < 2 1 / 5 . Числа, входящие в двойное неравенство, положительные. Их можно возводить в квадрат. Знаки неравенства при этом не изменятся. Тогда 4 < log 6 2 48 < 4 21 / 25.

Следовательно, интервал (log 3 1 / 16 ; log 6 48) включает в себя промежуток [-2; 4] и на нём размещаются целые числа -2; -1; 0; 1; 2; 3; 4.

Ответ: 7 целых чисел.

Пример 6.

Вычислите 3 lglg 2/ lg 3 - lg20.

Решение.

3 lg lg 2/ lg 3 = (3 1/ lg3) lg lg 2 = (3 lо g 3 10) lg lg 2 = 10 lg lg 2 = lg2.

Тогда 3 lglg2/lg3 - lg 20 = lg 2 – lg 20 = lg 0,1 = -1.

Ответ: -1.

Пример 7.

Известно, что log 2 (√3 + 1) + log 2 (√6 – 2) = А. Найдите log 2 (√3 –1) + log 2 (√6 + 2).

Решение.

Числа (√3 + 1) и (√3 – 1); (√6 – 2) и (√6 + 2) – сопряжённые.

Проведем следующее преобразование выражений

√3 – 1 = (√3 – 1) · (√3 + 1)) / (√3 + 1) = 2/(√3 + 1);

√6 + 2 = (√6 + 2) · (√6 – 2)) / (√6 – 2) = 2/(√6 – 2).

Тогда log 2 (√3 – 1) + log 2 (√6 + 2) = log 2 (2/(√3 + 1)) + log 2 (2/(√6 – 2)) =

Log 2 2 – log 2 (√3 + 1) + log 2 2 – log 2 (√6 – 2) = 1 – log 2 (√3 + 1) + 1 – log 2 (√6 – 2) =

2 – log 2 (√3 + 1) – log 2 (√6 – 2) = 2 – А.

Ответ: 2 – А.

Пример 8 .

Упростите и найдите приближенное значение выражения (log 3 2 · log 4 3 · log 5 4 · log 6 5 · … · log 10 9.

Решение.

Все логарифмы приведём к общему основанию 10.

(log 3 2 · log 4 3 · log 5 4 · log 6 5 · … · log 10 9 = (lg 2 / lg 3) · (lg 3 / lg 4)· (lg 4 / lg 5) · (lg 5 / lg 6) · … · (lg 8 / lg 9) · lg 9 = lg 2 ≈ 0,3010. (Приближенное значение lg 2 можно найти с использованием таблицы, логарифмической линейки либо калькулятора).

Ответ: 0,3010.

Пример 9 .

Вычислить log а 2 b 3 √(a 11 b -3), если log √ а b 3 = 1. (В этом примере, а 2 b 3 – основание логарифма).

Решение.

Если log √ а b 3 = 1, то 3/(0,5 log а b = 1. И log а b = 1/6.

Тогда log а 2 b 3√(a 11 b -3) = 1/2 log а 2 b 3 (a 11 b -3) = log а (a 11 b -3) / (2log а (a 2 b 3)) = (log а a 11 + log а b -3) / (2(log а a 2 + log а b 3)) = (11 – 3log а b) / (2(2 + 3log а b)) Учитывая то, что log а b = 1/6 получим (11 – 3 · 1 / 6) / (2(2 + 3 · 1 / 6)) = 10,5/5 = 2,1.

Ответ: 2,1.

Самостоятельно можно выполнить следующее задание:

Вычислить log √3 6 √2,1, если log 0,7 27 = а.

Ответ: (3 + а) / (3а).

Пример 10.

Вычислить 6,5 4/ log 3 169 · 3 1/ log 4 13 + log125.

Решение.

6,5 4/ log 3 169 · 3 1/ log 4 13 + log 125 = (13/2) 4/2 log 3 13 · 3 2/ log 2 13 + 2log 5 5 3 = (13/2) 2 log 13 3 · 3 2 log 13 2 + 6 = (13 log 13 3 / 2 log 13 3) 2 · (3 log 13 2) 2 + 6 = (3/2 log 13 3) 2 · (3 log 13 2) 2 + 6 = (3 2 /(2 log 13 3) 2) · (2 log 13 3) 2 + 6.

(2 log 13 3 = 3 log 13 2 (формула 4))

Получим 9 + 6 = 15.

Ответ: 15.

Остались вопросы? Не знаете, как найти значение логарифмического выражения?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Статьи по теме: